Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

February 8, 2012

Jeff Cox
South Coast Air Quality Management District

Program Objectives

- Nationwide demonstration and evaluation of approximately 250 medium-duty PHEV's
- Develop a production-ready, commercializable PHEV system for class 4 to 7 vehicles
- Develop production-ready "smart charging" capability for the vehicle
- Build customer familiarity
- Quantify performance attributes and environmental impact
- Use project results for system development to optimize performance and reduce costs

Project Status

- March 22, 2011, Eaton advised that the best case delivery of the first F550 hybrid system would occur in March of 2012
 - Eaton has advised that there is no commercial potential for their PHEV system in an F550
- May 5, 2011, DOE suspended performance, requesting corrective action plan
- Program was restructured to include Class 4 7 vehicles
- DOE approved the restructured program on December 16, 2011

Vehicle Overview

- Azure Shuttle Bus Application (Class 4)
 - Ford E450 Chassis
 - Ford 5.4L Gasoline Engine
 - Azure Dynamics Plug-in Hybrid Drive System
- Odyne Utility Truck Application (Class 6/7)
 - Class 6/7 Chassis
 - Diesel Engine
 - Odyne Plug-in Hybrid Drive System
- Azure Utility Truck Application (Class 5)
 - Ford F550 Chassis
 - Ford 6.7L Diesel Engine
 - Azure Dynamics Plug-in Hybrid Drive System

Vehicle Deployment Schedule

Azure E450s

First Vehicle Oct 2012

Last Vehicle
Dec 2012

Odyne Class 6 – 7s

First Vehicle
Dec 2012

Last Vehicle
Jul 2013

Azure F550s

First Vehicle Q4 2013

Last Vehicle Q2 2014

E450 Shuttle Bus

Vehicle Design:

- Azure Hybrid System
- Ford 5.4L Gasoline Engine
- High Energy Lithium-Ion Battery
- Blended Regenerative Braking
- Engine Off at Zero Speed
- On-board Charger (3.3 kW)
- Charging-Level 1 (120 Vac) and Level 2 (240 Vac)
- Electrified Accessories (Steering, Brakes, and HVAC)

Performance Specifications:

- At least 20 miles of charge depleting range
- Charge time less than 4 hours with Level 2

Azure PHEV E-450 Shuttle Bus

balance plus architecture

- INTEGRATED STARTER/ GENERATOR (ISG)
 Used to start the engine and to generate power.
- CLUTCHED FEAD Clutch at crank shaft opens when engine off & ISO then spins the disconnected Front Engine Accessory Drive (FEAD) system (power steering/brake pump, water pump, alternator & A/C compressor).
- VEHICLE CONTROL UNIT (VCU) Controls all hybrid components and coordinates their operation with the Ford systems (e.g. start/stop).
- ON BOARD CHARGER Converts 120V (level 1) or 208/240V (level 2) AC input from the charge port to DC power to charge battery.

- 5 HIGH VOLTAGE JUNCTION BOX Distributes DC power from battery to components and contains highvoltage fuses.
 - ISG MOTOR CONTROLLER
 Converts DC from the battery
 to 3 phase AC for the ISG motor.
 Controls the speed and torque of
 the ISG motor.

- CHARGE PORT Vehicle is connected to the electrical grid through this port when charging. Capable of 120V (level 1) or 208/240 (level 2) AC charging.
- TRACTION MOTOR
 Converts electrical energy to
 wheel torque in order to propel the
 vehicle. Speed & torque outputs are
 based on accelerator input as well
 as vehicle operating conditions.
- ENERGY STORAGE SYSTEM (ESS): HIGH VOLTAGE BATTERY PACK Liquid cooled high voltage Li-lon battery pack. Stores energy and includes internal sensors and controller.

TRACTION MOTOR CONTROLLER

Converts DC from the battery to

3 phase AC for the traction motor.

Controls the speed and torque of

Converts high-voltage DC power to keep the 12V batteries charged

and to supply power for 12V

the traction motor.

DC/DC CONVERTER

accessories.

ELECTRIC AIR CONDITIONING UNIT Converts DC from the battery to 3 phase for the air conditioning compressor motor.

Class 6/7 Aerial Truck- Odyne

Vehicle Design

- Odyne Hybrid System with Allison automatic transmission
- Diesel Engine
- High Energy Lithium-Ion Battery- JCS 28.4 kWh
- Blended Regenerative Braking
- Launch Assist
- On-board Charger (>3.3 kW)
- Charging-Level 1 (120 Vac) and Level 2 (240 Vac)
- Export Power (>5 kW, 120/240 Vac, 60 Hz)
- Redundant system that can be returned to conventional driving

Performance Specifications:

- ePTO operation (>5 Hours with Engine-Off)
- Up to 10 miles equivalent all electric range
- Charge time less than 6 hours with Level 2

Work Truck Applications

Hybrid Bucket Truck

Hybrid Compressor Truck

Hybrid Digger Derrick

Hybrid Crane Truck

Hybrid Architecture

Parallel Hybrid Solution

- Provides redundant system to operator to minimize downtime.
- Low validation and capital equipment costs,
- Ability to retrofit to existing vehicles

Core Components

Minimally Intrusive Design

Ancillary Components

Fuel Savings - Utility Bucket Truck

Fuel Consumption (Gallons)

Conventional Vehicle vs. Odyne PHEV

	Baseline Vehicle	Odyne PHEV
Driving (32 miles/day)	5.26	4.89
ePTO at job site (4.2 hours/day)	4.02	0.00
Hydraulic Load (1.0 hours/day)	1.47	0.00
Work Day Total	10.74	4.89
Total Savings	54.5%	

Estimated results based upon SWRI testing of 1st generation system and actual duty cycle measurements.

Overview F550 Aerial Truck – Azure

Vehicle Design

- Azure Hybrid System with Ford automatic transmission
- Ford 6.7L Diesel Engine
- High Energy Lithium-Ion Battery- JCS 14.4 kWh
- Blended Regenerative Braking
- Engine Off at Zero Speed
- On-board Charger (>3.3 kW)
- Charging-Level 1 (120 Vac) and Level 2 (240 Vac)
- Electrified Accessories (Steering, Brakes, and HVAC)
- Export Power (>5 kW, 120 Vac, 60 Hz)

Performance Specifications:

- ePTO operation (>2 to 3 Hours with Engine-Off)
- Up to 10 miles pure electric range (25 mph max)
- Charge time less than 4 hours with Level 2

Azure PHEV F-550 Super Duty

Preliminary Packaging

Universal Gear Box (UGB), electric Motor (drive motor and ePTO function)

Azure PHEV F-550 Super Duty

Technical Targets

- Engine off at zero speed, electric-only operation at low speed
- Engine off time at worksite: 2 to 3 hours
- 10 mile equivalent electric range (may reduce available kWh at worksite)
- Fuel Economy Improvement: 50% target (depending on duty cycle)
- Exportable Power: Target 5 kW minimum

Supporting Program Activities

- A charging infrastructure is purchased and installed for each vehicle
- A Smart Charging Module is provided with each vehicle and allows smart charging with the grid
- A data acquisition system is provided with each vehicle and data is recorded and analyzed for two years of the program

 Emissions testing based on measured use-profiles from the field study

Questions

