

MATES V Emissions Inventory and Modeling Methods and Results

Sang-Mi Lee Program Supervisor Jo Kay Ghosh Health Effects Officer

MATES V Technical Advisory Group Meeting
April 14, 2021

Emissions Inventory Methods and Results

Sang-Mi Lee
Program Supervisor

MATES V Modeling Platform

Chemical Transport Model

CAMx RTRAC v6.50

Modeling Period

May 1, 2018 – April 30, 2019, the same as the measurement period

Modeling Domain

South Coast Air Basin and majority of Coachella Valley in 2 km spatial resolution

Emissions

Based on the 2016 AQMP inventory with updates

Developing Emissions Inventory for MATES V

Point sources

Reported emissions from 2018 Annual Emissions Reporting program

On-road mobile sources

Vehicle activity data is consistent with 2016 AQMP; Vehicle emissions rate is based on EMFAC 2017

- Ocean Going Vessels
 Updated OGV emissions based on CARB 2018 SIP update
- Area and other Off-Road mobile sources
 2016 AQMP emissions inventory projected to 2018
- Air Toxics

Speciated from Total Organic Gases and PM emissions

Top 5
Pollutants
Contributing to
Cancer Potency
Weighted
Emissions

Toxic	Contribution (%)
Diesel particulate	72.52
Benzene	7.36
1,3-butadiene	7.00
Hexavalent chromium	2.92
Formaldehyde	2.48

Cancer Potency
Weighted
Emissions
by Major
Source
Category

Changes in Cancer Potency Weighted Emissions

Changes in DPM Emissions from MATES IV to V

CAMx RTRAC
Modeling and
Risk Estimation

Allocating Emissions from On-Road Mobiles Sources

- Based on real-time sensor data
- Light and Medium duty vehicles
 - California Department of Transportation Performance Measurement System (Caltrans PeMS)
 - > 9000 traffic monitoring stations
- Heavy duty vehicles
 - Single loop sensors to detect Heavy Duty traffic

Allocation of Ocean Going Vessels Emissions

- The automatic identification system (AIS) is an automatic tracking system used for collision avoidance on ships and by vessel traffic services (VTS).
- Provides vessel type, size, position, course, and speed.

Predicted vs Observed EC2.5 concentrations

Los Angeles A EC2.5

Measured vs Predicted EC2.5

Simulated Diesel PM Concentrations

Simulated Inhalation Only Cancer Risk

TACs Contributing to Modeled Inhalation Risk

MATES V

Modeled Inhalation Only Risks for South Coast Air Basin (risk per million)

Reductions in Emissions and Risks from MATES IV to V

South Coast Air Basin				
Category	Emissions	Inhalation Risk		
DPM	53%	56%		
Total	48%	53%		

Population-Weighted Inhalation Cancer Risk

Summary

- MATES V emissions inventory shows 48% overall reduction of carcinogenic pollutants from MATES IV
- Diesel PM contributes 73% of the overall cancer potency weighted emissions
- Model-prediction based inhalation only risk decreased by 53% for the South Coast Air Basin and 30% for Coachella Valley from MATES IV.
- Diesel PM continues to be the primary risk driver, contributing to more than 72% of the inhalation-only risk and 67% of the overall multiple pathway air toxics cancer risk.

Modeling Health Risk Results

Jo Kay Ghosh
Health Effects Officer

MATES V Air Toxics Cancer Risk – Modeling Data

Population-Weighted Multi-Pathway Cancer Risk:

- Basin: 454-in-a-million
- Coachella Valley: 249-in-amillion
- LA County: 497-in-a-million
- Orange County: 388-in-amillion
- Riverside County: 332-in-amillion
- San Bernardino County: 470in-a-million

Inhalation Air Toxics Cancer Risk excluding Diesel PM Ports Area – Multi-Pathway Air Toxics Cancer Risk

MATES IV (2012) MATES V (2018)

Cancer Risk [per million]

1601 - 4800

1451 - 1600

1301 - 1450

1151 - 1300

1001 - 1150

851 - 1000

701 - 850

551 - 700

401 - 550

251 - 400

101 - 250

0 - 100

Ports Area – Multi-Pathway Air Toxics Cancer Risk

	MATES IV		MATES V		Average
Region	2012 Population	Average Risk (Per Million)	2018 Population	Average Risk (Per Million)	Percentage Change in Risk
Basin	15,991,150	997	16,599,786	454	-54%
Ports Area	998,745	1293	1,004,938	558	-57%
Basin Excluding Ports Area	14,992,806	978	15,994,848	447	-54%

LAX- Multi-Pathway Air Toxics Cancer Risk

MATES IV (2012)

MATES V (2018)

Downtown LA/East LA -Multi-Pathway Air Toxics Cancer Risk

MATES IV (2012)

MATES V (2018)

Trends in EJ Communities

AB 617 Community	MATES V Air Toxics Cancer Risk*	Change since MATES IV
Wilmington, Carson, West LB	612	-57%
San Bernardino, Muscoy	506	-43%
East LA, Boyle Heights, West Commerce	652	-61%
Southeast LA	567	-63%
Eastern Coachella Valley	282	-31%

^{*}shown in chances per one million

Summary of MATES V Air Toxics Cancer Risk Modeling Results

- Basin average risk* is 54% lower than in MATES IV
- Coachella Valley average risk* is 30% lower than in MATES IV
- Diesel PM contributes 67% of the air toxics cancer risk* in the Basin
- LAX and Ports area have the highest air toxics cancer risks
- LA County and SB County have higher average air toxics cancer risks than OC and Riverside County
- Risks in EJ communities declined substantially, but EJ communities continue to experience higher risks compared to non-EJ communities