

VOC, Waivers, other ideas:

Presentation Outline

- Some VOC ideas
- Relative Volatility
- Various Methods of Determining VOC
- Using GC with corrections is most efficient?

VOC Categories versus Sliding Scale

Category Zero-VOC (I); less volatile than MePalm (or comparable standard like dibutyl phthalate) by dried film retention experiment @ 110 °C

Category Near Zero-VOC (II); volatility about equal to less than glycerol but more than MePalm by dried film retention experiment @ 90 °C

Category Low VOC (III); volatility less than Texanol but more than glycerol by dried film retention experiment @ 70 °C

Category VOC (IV); materials obviously more volatile than Texanol by TGA, NBP, dried film or other experiment

- * The GC method would be used for an initial evaluation of a sample with the above criterion applied to waive certain molecules with "non-representative" GC Rt's
- ** Any material to be considered for Category I, II or III classification should have a demonstrated favorable HES profile (e.g., LD50(rat) > 1000 mg/kg, etc.)
- *** Additive producers interested in an official value for an additive would need to have the test(s) carried out at a validated external lab

Willing to define a threshold level of material of defined volatility as "Zero-VOC"

* full acknowledgement by footnote that said definition is a consensus agreement rather than an actual zero-VOC (as zero-VOC is a theoretical state that can't be obtained

{(total amount of type II * 0.05) + (total amount of type III*0.1) + TOTAL amount of IV} < 0.1%

- a. Type I content; any amount
- b. Type II content; less than 2%
- c. Type III content; less than 1%
- d. Type IV content; less than 0.1%
- * some other combination adhering to a limit formula

Waiver Testing

What is the best test?

Exact parameters of retention test still TBD:

- 1) Temperature of bake "relative volatility as function of T"
- 2) Length of bake
- 3) Type(s) of paint to use as matrix for testing additives
- 4) Consideration of possible incorporation of additive by covalent bonding (e.g., ester formation) into resin/polymer.

"consider if possible"

Relative Volatility

"Relative Volatility" Changes with Temperature

Theoretical VP Functions

VP Functions

VOC-or Not?

Surface Coatings International 1997 (10)

VOC – or Not? Determination of an Important Environmental Parameter

C Nielsen, B Hogh and E Walistrom

Surface Coatings International 1997 (10)
VOC – or Not?

Determination of an Important Environmental Parameter
C Nielsen, B Hogh and E Walistrom

VOC or not: boiling point limits

A screening of the literature for experimental values of the boiling point temperatures and vapor pressures at 23°C gave the following:

- no organic solvents boiling below 170°C have a vapor pressure below 10 Pa at 23°C
- all solvents boiling above 260°C have a vapor pressure which is below 10 Pa at 23°C
- only three solvents, two ethers and a chlorinated compound, were found to have a vapor pressure above 10 Pa in the boiling point range 235-260°C
- for common organic solvents such as linear hydrocarbons, alcohols and polyols the boiling point is below 220°C before the solvents become a VOC according to their vapor pressure at room temperature.

$$T = \frac{\Delta \Delta H}{R ln \left(\frac{P_2}{P_1}\right) + \Delta \Delta S} = \frac{\Delta A}{ln \left(\frac{P_2}{P_1}\right) + \Delta B}$$

ΔΔΗ (J/mol)	ΔΔS (J/mol-K)	VP Ratio (P ₂ /P ₁)	T(°C)
1000	3	1.1	180
1000	3	1.0	60
1000	3	(1.1)-1	-116
4000	10	1.3	238
4000	10	1.0	127
4000	10	(1.3)-1	55

Examples of Derivative Weight Loss Ratios

ASTM E1868-10

(81°C, 110 minutes)

AAA	VOC (g/l)	% Evaporated	Normal BP (C)
DCHA	911 g/l	99.7%	256
BAE	883 g/l	98.9%	199
DBAE	860 g/l	99.8%	230
3-amino-4-octanol	620 g/l	78.2%	218
≈50% MDEA (aq)	197 g/l	68.3%	-
MDEA	171 g/l	16.5%	247
HBHEBA	151 g/l	18.1%	≈295
≈50% BDEA (aq)	87 g/l	58.4%	-
BDEA	69 g/l	7.5%	285
ODEA	<10 g/l (considered zero VOC)	0%	≈350

Loss-On-Drying by Thermogravimetry ASTME1868-10

LOD, Loss-On-Drying 110 min @ 81° CASTME1868-10	58.4%
Volatile Material Content ASTME1868-10	588.6g/L
VOC, Volatile Organic Compounds Content ASTME 1868-10	16.5%
Density @ 15C ASTM(D4052)	1.0075 g/ml
Water by Karl Fischer (ASTME D6304)	49.780 wt%
	4.5. = 0.4
LOC, Loss-On-Drying 110 min @81° CASTME1868-10	16.5%
Volatile Material Content ASTME1868-10	171.8g/L
VOC, Volatile Organic Compounds Content ASTME1868-10	171.4g/L
Density @ 15oC (ASTM D4052)	1.0428 g/ml
Water by Karl Fischer (ASTM D6304)	0.040wt%

GC1/Rt and Volatility

GC 1/Rt does not strongly correlate to volatility

HP-5 (apolar)			
Compound	Boiling point °C	RT min	
Methyldiethanolarnine	247	5.70	
2-amino 2-ethyl 1, 3 propaandiol	259	6.20	
Butyldiethanolarnine	283	7.30	
Diethyladipate	251	8.50	
Tetradecane	253	8.53	
Triethanolarnine	335	8.60	
BisDMAPA-PO	290	10.30	
Tris-DMAPA	285	11.10	

HP-Innowax (polar)			
Compound	Boiling point °C	RT min	
Tretradecane	253	7.94	
Butyldiethanolarnine	283	9.45	
Diethyladipate	251	11.05	
Tris-DMAPA	285	11.35	
Methyldiethanolarnine	247	11.50	
BisDMAPA-PO	290	11.70	
2-amino 2-ethyl 1, 3 propaandiol	259	12.5	
Triethanolarnine	335	17.70	

DB-1301 (apolar)			
Compound	Boiling point °C	RT min	
Methyldiethanolarnine	247	8.58	
2-amino 2-ethyl 1, 3 propaandiol	259	9.04	
Tetradecane	253	10.00	
Diethyladipate	251	10.40	
Butyldiethanolarnine	283	10.52	
Triethanolarnine	335	11.91	
BisDMAPA-PO	290	12.55	
Tris-DMAPA	285	13.42	
Methylpalmitate	333	16.10	

DB-17 (semi-polar)			
Compound	Boiling point °C	RT min	
Methyldiethanolarnine	247	7.80	
2-amino 2-ethyl 1, 3 propaandiol	259	8.65	
Butyldiethanolarnine	283	9.05	
Tetradecane	253	9.55	
Diethyladipate	251	12.95	
Triethanolarnine	335	15.15	
BisDMAPA-PO	290	15.25	
Tris-DMAPA	285	15.50	

Comparisons

Rating Volatility:

- 1) TGA
- 2) DSC
- 3) Additive Retention
- 4) Chamber Tests
- 5) Boiling Point by Ebuliometry
- 6) GC Rt

^{*} Additive retention is complement of chamber and/or vapor space testing

