MATES V Regional Modeling Analysis: Emissions Inventory and Modeling

MATES V Technical Advisory Group Meeting July 6, 2017

Sang-Mi Lee, Xinqiu Zhang, Marc Carreras Sospedra and Scott Epstein

South Coast Air Quality Management District

Toxic Air Contaminants (TAC) Inventories for MATES-IV

- MATES IV: 2012-2013
- Criteria Pollutant Inventories:
 - Based on 2012 AQMP Inventories
 - Projected from 2008 (base year) to 2012
- TAC Emissions from Speciation of TOG and PM Emissions Using CARB Profiles
- Hourly Emissions in 2x2Km Grids for Regional Modeling

Emissions Inventory for MATES V

- Point & Area sources
 - 2016 AQMP inventory
 - Annual Emissions Report for 2017 or 2018 upon availability
- On-Road
 - Emissions rates from EMFAC 2017
 - VMT and travel activity data for 2018
 - SCAG'S 2016 RTP/SCS Travel Demand Model estimates
- Off-Road
 - 2016 AQMP inventory projected for 2018
 - Port and OGV will be revised using the most recent available data
 - Discrepancy between projection from actual data
 - Incorporating Revisions Available by 2019

On-Road Emissions Inventory for the 2016 AQMP

- Based on real-time sensor data
- Light and Medium duty vehicles
 - California Department of Transportation
 Performance Measurement System
 (Caltrans PeMS)
 - > 9000 traffic monitoring stations
- Heavy duty vehicles
 - CalTrans PeMS Weight-In-Motion (WIM)

Possible Improvements

- Latest CARB Speciation Profiles upon availability
- Utilizing Permit Information to Allocate Minor Point Sources to Specific Locations
 - Minor Point sources are currently treated as area source
- Finer Scale spatial representations of
 - On-Road Emissions
 - Railroad Emissions
- Re-evaluating Ocean Going Vessels
 - Projection vs. Actual reported emissions
 - GPS based real-time ship location data, AIS (Automatic identification system)
- Improving aircraft taking-off and landing emissions
 - ACARS (Aircraft Communications Addressing and Reporting System)
 - "Aircraft Situation Display to Industry" (ASDI) data
 - Collaboration with CARB

AIS (Automatic identification system) Marine Traffic Data

- The automatic identification system (AIS) is an automatic tracking system used for collision avoidance on ships and by vessel traffic services (VTS).
- Provides vessel type, size, position, course, and speed.

Example of AIS ship data near Port of LA

Aloft Aircraft Emissions

(Source: www.flickr.com)

Chemical Transport Modeling

- Same as MATES IV
- 2 km by 2 km grid resolution
- Domain covers the Basin, major
 OGV corridors and the Coachella
 Valley

Figure 4-1.

MATES IV Modeling Domain. Shaded area highlights the grid extension to the MATES III modeling domain.

Modeling Platform: Dispersion Platform

- In-House Emissions Model
- Meteorological Model to provide dispersion platform
 - WRF mesoscale model
 - NAM and NARR as initial and boundary values
 - Considering urban parameterizations with high-resolution urban morphology, and high-resolution landuse data from SCAG

Modeling Platform: Chemical Transport Platform

CAMx/rTRAC

- Reactive Tracer probing algorithm
- In MATES IV simulations, 20 toxic species were identified as a major risk contributors

CMAQ

- Primary modeling platform for the 2012 and 2016 AQMPs
- Offers several options to account for chemical reactions and source apportionment probing tool for toxic species
- Still needs customization to enable tracking of key toxic contaminants and source contributions to them.

Toxics reported in MATES IV

Species	Туре	CB6MP_AE6_AQ (CMAQ 5.2)	SAPRC99tx3_ae5_aq (CMAQ 5.0.2)	saprc07tc_ae6_aq (CMAQ 5.2)
1,3 Butadiene	Gas	BUTADIENE13	√	√
Acetaldehyde	Gas	ALD2, ALD2_PRIMARY	✓	✓
As (2.5)	Aerosol	AAS (I)		
As (TSP)	Aerosol	AAS(I,J,K)		
Benzene	Gas	BENZENE	✓	✓
Cd (2.5)	Aerosol	ACD (I)	✓	
Cd (TSP)	Aerosol	ACD (I,J,K)	✓	
Cr6 (TSP)	Aerosol	ACR_VI (I,J,K)	✓	
EC ₁₀	Aerosol	DE_EC (I,J)		
EC _{2.5}	Aerosol	DE_EC (I)		
Formaldehyde	Gas	FORM, FORM_PRIMARY	✓	✓
Methylene Chloride	Non-reactive	CL2_ME	✓	
Naphthalene	Non-reactive	NAPHTHALENE	✓	
Ni (2.5)	Aerosol	ANI (I)	✓	
Ni (TSP)	Aerosol	ANI (I,J,K)	✓	
Pb (2.5)	Aerosol	APB (I)	✓	
Pb (TSP)	Aerosol	APB (I,J,K)	✓	
P-Dichlorobenzene	Non-reactive	DICHLOROBENZENE	✓	
Perchloroethylene	Non-reactive	CL4_ETHE	✓	
Trichloroethylene	Non-reactive	CL3_ETHE	✓	

Summary

- Emissions Inventory will be substantially updated from MATES IV methodology. This includes spatial and temporal allocation of on- and off-road mobile sources and point sources
- Multiple Chemical transport modeling platforms and various chemical mechanisms will be evaluated to ensure the most updated methodology and consistent with AQMP/SIP approaches.