

## PRIMER Concept

- Trans-Pacific
   partnerships of
   multiple port
   regions around the
   Pacific Rim
- Coordinated efforts to incentivize cleaner ocean-going vessels (OGV) on shared routes



Image Source: Ocean Network Express Service FP2 (https://www.one-line.com/en/routes/current-services)



# Incentive Study to Inform PRIMER Design



Cumulative incentives awarded for all PRIMER port calls over Years 1-3





Technology investment at Year 0 + O&M costs over Years 1-3





# Sources of Data and Key Assumptions

#### **PER-PORT-CALL INCENTIVES**

- Costs of technology: literature + industry experts
- Payback period: 2-3 years per industry
- Port calls: based on historical IHS-Seaweb (formerly Lloyds Fairplay) data\*
- Uniform incentive amount: all partnering ports assumed to offer the same amount of per-port-call incentive for the sake of analytical simplicity, but not necessary for actual program implementation



(\* Using 2017-19 data and excluding "shifts" between terminals or subports within the same port group)



### Sources of Data and Key Assumptions (Cont.)

#### **NOX EMISSIONS**

- Geographical domain:
  - Vessel activities within 100 nautical miles radius
- Emission reduction rates:
  - **Tier III:** single parameter of 80% reduction from Tier I & 76% from Tier II based on IMO limits
  - **Tier II+:** assuming a distribution/range of reduction rates to account for uncertainties
  - No surplus emission reductions at berth for California ports due to shore power requirements
- Operational threshold for Tier III technologies:
  - 25% propulsion engine load: benchmark assumption based on the lowest certification test cycle load point
  - 10% & 0%: sensitivity tests
- Engine loads: based on historical AIS data





# Five Scenarios of Transpacific Partnerships

#### California ports:

- Port of Oakland
- San Pedro Bay Ports (POLA/LB)
- 1. Greater Bay Area & California
- 2. Top National Ports & California
- 3. Northern Transpacific Routes
- 4. Southern Transpacific Routes
- 5. All Transpacific Routes









### Incentive Model Design

- Port-specific network geometries and bottom-up activity profiles
- RATES model emission estimation methodology aligned with IMO GHG4 Study, U.S. EPA OGV Emissions Inventory, and the San Pedro Bay Ports Emissions Inventory
- Cost, per call, for NOx control technology
  - Selective Catalytic Reduction (SCR) Tier III
  - Exhaust Gas Recirculation (EGR) Tier III
  - Water in Fuel (WiF) 20 40% NOx reduction





#### Scenario 1 – China GBA + San Pedro + Oakland

• 6 Ports: Port of Los Angeles, Long Beach, Oakland, Shenzhen, Hong

Kong, and Guangzhou

- 3-year period of analysis
  - 224 frequent caller container ships
  - 10,101 total calls across all ports
- 4 vessel groups by call percentile
  - $\geq 95\%$ ;  $\geq 75\%$ ;  $\geq 50\%$ ;  $\geq 25\%$
- Technology operational thresholds
  - 25% main engine load
  - 10% main engine load
  - No threshold





#### Scenario 1 – Incentive and Abatement Costs

#### **Per-Call Incentive**



#### Cost per MT NOx Abated



\*Assuming an operational threshold of 25% main engine load for EGR & SCR.



#### Scenario 1 – Total Costs and Abatement



San Pedro Bay Ports would see NOx reductions of ~200 MT from most frequent flyers, assuming the benchmark operational threshold for EGR & SCR



Operational threshold has minimal effect on EGR costs, but a large effect on SCR costs due to changes in catalyst (urea) consumption

Important to understand operational parameters of the systems for comparing costs





# Scenario 1 – Incremental O&M Costs for Tier III Technologies





#### Scenario 1 vs Scenario 5

- 6 Ports vs 26 Ports
- 36% 45% reduction in costs per call
- Same per-call NOx abatement
- Greater overall NOx abatement for lower marginal costs





# **Engine Power**





EE RA

13

#### Conclusions

- WiF, EGR, and SCR each offer significant NOx abatement
- WiF offers the least cost option, Tier III costs are 6-7x WiF
- Targeting most frequently calling OGVs (e.g., ≥ 95<sup>th</sup> percentile) results in the lowest per-call and overall program costs, but also lowers overall NOx abatement when compared to targeting a larger group of frequent callers
- Engaging more ports lowers per-call costs while per call NOx abatement remains consistent
- Vessel/engine size has a large effect on Tier III capital expenditures and associated per-call costs
- Understanding operational thresholds is imperative for fine tuning Tier III cost and abatement estimates



### PRIMER Status Updates Since OGV Meeting #1



#### **Engagement with Asia**

- Virtual meeting with the Tokyo Metropolitan Government on regional air quality management and shipping emissions control programs and policy
- Joint presentation with the Hong Kong Department of Environmental Protection at the 3<sup>rd</sup> Conference on Ozone Pollution Control in China, organized by the Chinese Society for Environmental Sciences



#### Technical analysis & industry outreach

- Active discussions with interested parties in the U.S. and Europe to identify ways to better understand OGV NOx emissions during low load operations, especially for Tier III
- Began working with Explicit ApS to analyze drone-based NOx measurements
- Outreach to the industry regarding a potential phase 1 incentive for existing Tier III ships and inquire willingness to collaborate on a low load study





#### Contacts

I. Elaine Shen, PhD



Program Supervisor - International Clean Shipping Program South Coast Air Quality Management District

(909) 396-2715

eshen@aqmd.gov

Edward W. Carr, PhD



**Vice President of Operations** 

Energy and Environmental Research Associates, LLC ecarr@energyandenvironmental.com

# OGV Working Group June 2, 2021

Thomas Jelenić Vice President





#### **Emissions Forecast**

Growth forecast too high 2018 was peak year 10% below forecasts CAGR: 0.65% from pre-recession peak









#### **Emissions at Anchorage**





# Maneuvering/Transiting Emissions





# Maneuvering/Transiting Emissions







#### At Berth Rule

Increased compliance requirements 2025

With OGV Fuel Rule, risk creating de facto California fleet, potentially limiting slowing turnover









# New Vessel Technologies

| _ | _ |   |              |   |
|---|---|---|--------------|---|
| п | 2 | h | $\mathbf{a}$ | • |
|   |   |   |              |   |

| Energy storage type                                   | Supply | Energy density | Required tank volume | Supply pressure | Injection pressure | Emission reduction compared to HFO Tier II |                 |                 |    |
|-------------------------------------------------------|--------|----------------|----------------------|-----------------|--------------------|--------------------------------------------|-----------------|-----------------|----|
|                                                       | MJ/kg  | MJ/L           | m <sup>3 *1</sup>    | bar             | bar                | %                                          | %               | %               | %  |
| HFO                                                   | 40.5   | 35             | 1,000                | 7-8             | 950                | SO <sub>x</sub>                            | NO <sub>x</sub> | CO <sub>2</sub> | PM |
| Lieurfiedertunden (INO 1000)                          |        | 00             | 1.500                | 300 methane     | 300 methane        | 90-99                                      | 20-30           | 24              | 90 |
| Liquefied natural gas (LNG -162°C)                    | 50     | 22             | 1,590                | 380 ethane      | 380 ethane         | 90-97                                      | 30-50           | 15              | 90 |
| LPG (including Propane / Butane)                      | 42     | 26             | 1,346                | 50              | 600-700            | 90-100                                     | 10-15           | 13-18           | 90 |
| Methanol                                              | 19.9   | 15             | 2,333                | 10              | 500                | 90-95                                      | 30-50           | 5               | 90 |
| Ethanol                                               | 26     | 21             | 1,750                | 10              | 500                |                                            |                 |                 |    |
| Ammonia* (liquid -33°C)                               | 18.6   | 12.7           | 2,755                | 70              | 600-700            | 90-95                                      | Tier            | 95              | 90 |
| Hydrogen (liquid -253°C)                              | 120    | 8.5            | 4,117                | -               |                    |                                            |                 |                 |    |
| Marine battery market leader,<br>Corvus, battery rack | 0.29   | 0.33           | 106,060              |                 |                    |                                            |                 |                 |    |
| Tesla model 3 battery Cell 2170 *2                    | 0.8    | 2.5            | 14,000               |                 |                    |                                            |                 |                 |    |

Table 1: Physical and chemical fuel properties related to combustion in two-stroke engines, where \*1 is based on a 1000 m³ HFO tank, the additional space required for insulation is not included in the table. All pressure values are for high-pressure injection and \*2 the values for the Tesla battery do not contain the energy/mass needed for cooling/safety/classification



Source:

Engineering the future two-stroke green-ammonia engine
Man Energy Solutions
November 2019

