

2022 AQMP Mobile Source Working Group Meeting #1 – Aircraft

February 4, 2021

Cleaning The Air That We Breathe...

Agenda

- 1. Aircraft Operations and Emissions AQMD
 - 2. Strategies for Reducing Emissions from Aviation CARB
 - Update on Aircraft Emissions Standards U.S. EPA
- 4. Federal Initiatives Addressing Aviation Emissions FAA

Agenda Item #1

Aircraft Operations and Emissions in South Coast AQMD

Airports in South Coast AQMD

- Commercial
 - LAX, Ontario, Burbank, John Wayne, Long Beach, Palm Springs, San Bernardino
- General Aviation
 - 31 airports
 - Van Nuys, Riverside, Hawthorne, Fullerton, Chino, Cable
- Military
 - 3 airports
 - March Air Reserve Base, Los Alamitos Army Air Base, San Clemente Island Naval Air Station

Major aircraft types

Air Carrier (passenger and cargo)

 aircraft with seating capacity of more than 60 seats or a maximum payload capacity of more than 18,000 pounds, carrying passengers or cargo for hire or compensation

Air Taxi

 aircraft designed to have a maximum seating capacity of 60 seats or less or a maximum payload capacity of 18,000 pounds or less, carrying passengers or cargo for hire or compensation

General Aviation

• all civil aircraft, except for air carriers or air taxis

Military

all military aviation

Aircraft operations by major aircraft type and airport

Aircraft operations by major aircraft type and airport (cont'd)

Aircraft emission calculation methodology

- Number of aircraft operations
 - Airports, FAA's databases
- FAA's Aviation Environmental Design Tool (AEDT)
 - Comprehensive model with detailed aircraft/engine emissions calculation algorithm
 - Example: Aircraft: Boeing 737-300 Engine: CFM56-7B20
- EPA's emission factors (for aircraft operations with unknown aircraft/engine data)
 - Average emission factors for major aircraft types
 - · Commercial, Air taxi, General aviation, Military
- FAA's survey data
 - Air taxi and General Aviation
 - Piston/jet engines

AEDT model example of aircraft/engine combination (Boeing 777-200)

	GE Aircraft Engines	Pratt & Whitney	Rolls-Royce plc
	3GE059	1PW041	2RR022
	3GE061	1PW053	2RR023
	3GE062	1PW054	2RR024
	3GE063	1PW055	2RR025
	3GE064	1PW056	2RR026
	3GE065	1PW058	2RR027
	3GE066	2PW060	3RR029
	6GE087	2PW061	5RR040
	6GE088	3PW063	14RR071
	6GE089	5PW074	
	6GE090	5PW076	
	7GE097	8PW089	
	7GE098	10PW097	
	7GE099	10PW098	
	8GE100	10PW099	
	9GE120	12PW101	
	9GE122	12PW102	
	9GE123		
	9GE127		

AEDT model example of aircraft/engine Emission Coefficients (Boeing 777-200)

Select NOx Emission Coefficients (grams/kilogram fuel)							
Engine Code	Manufacturer	Takeoff	Climbout	Approach	Idle		
3GE059	GE Aircraft Engines	45.53	35.68	12.46	5.73		
6GE087	GE Aircraft Engines	40.41	31.77	15.09	5.64		
7GE097	GE Aircraft Engines	44.44	33.85	15.78	5.11		
8GE100	GE Aircraft Engines	56.41	41.74	17.38	6.09		
9GE120	GE Aircraft Engines	42.68	33.82	14.43	5.01		
1PW041	Pratt & Whitney	32.50	24.60	11.60	5.00		
2PW060	Pratt & Whitney	38.10	31.50	11.00	4.20		
5PW074	Pratt & Whitney	22.50	18.00	11.10	4.30		
10PW097	Pratt & Whitney	44.68	34.05	11.63	3.81		
12PW101	Pratt & Whitney	31.74	25.03	11.91	3.72		
2RR022	Rolls-Royce plc	39.11	30.01	10.34	5.60		
3RR029	Rolls-Royce plc	31.25	24.66	10.01	4.52		
5RR040	Rolls-Royce plc	47.79	34.29	11.39	5.11		
14RR071	Rolls-Royce plc	35.56	26.82	10.42	4.66		

Aircraft emissions by major aircraft type

Source: Aircraft Emissions Inventory for the 2016 AQMP, August 2016.

Growing contribution of aircraft emissions

Aircraft emissions compared with other major mobile source categories

Air passengers forecast in 2016 and 2020 Regional Transportation Plans

- Aircraft emissions being updated
 - AEDT Model
 - Updated forecasts
 - 2018 base year
 - 2023, 2031, and 2037 forecast years
- Draft report to be available in late February

2022 AQMP Overall Schedule

Preliminary 2018 emissions

inventory January 2021 Draft control measures June/August 2021

Release Draft AQMP Late Fall 2021

CARB Board Hearing July 2022

April 2021

Updated base and future emissions inventory

June/August 2021 **Carrying Capacity**

June 2022 South Coast AQMD Board Hearing

August 3, 2022 70 ppb Ozone SIP due to EPA

Mobile Source Working Groups

December 2020 – June /August 2021

Staff Contact Information

Zorik Pirveysian
Planning and Rules Manager
(909) 396-2431
ZPirveysian@aqmd.gov

Sang-Mi Lee Program Supervisor (909) 396-3169 SLee@aqmd.gov

AQMP Mobile Source Working Groups AQMPMobileSources@aqmd.gov Xinqiu Zhang Senior Staff Specialist (909) 396-3158 xzhang@aqmd.gov

Eric Praske
Air Quality Specialist
(909) 396-2948
EPraske@aqmd.gov

Strategies for Reducing Emissions from Aviation

2022 AQMP Mobile Source Working Group

February 4, 2021

South Coast 2037 Draft Attainment Goal

Controlling Federal Sources is Critical to Achieving our Clean Air and Climate Targets

Source: CARB, CEPAM 2016 SIP - Standard Emission Tool (v1.05), https://www.arb.ca.gov/app/emsinv/fcemssumcat/fcemssumcat/2016.php

Aviation Sector

- Aircraft jet engines
 - Emissions: 70% CO₂, 29% H₂O, 1% pollutants (NOx, PM, CO, HC, etc.)
 - o 90% of all emissions (except CO and HC) occur at higher altitude
 - 10% occur during landing, takeoff, and ground operation
- Auxiliary power units (APUs)
 - APUs start the aircraft main engines and power electrical systems
 - o Emissions: NOx, PM, CO, HC, etc.
- Airport ground transport
 - covered under off-road diesel regulation and amendments, as well as MOUs

Aircraft Emissions Growing Statewide

 Aircraft and marine vessels are the only two mobile sectors with emissions growing from 2000-2030, primarily due to more stringent engine emission standards in other categories

Aircraft Emission Contribution Growing in South Coast

Aircraft makes up 11% of mobile source NOx emission in 2037, up from 5% in 2017

6

Aircraft Regulations and Standards

- The International Civil Aviation Organization (ICAO) sets international emission standards for jet engines
 - CAEP/8: latest NOx standard adopted in 2011, 50% below CAEP/1
 - CAEP/10: first CO2 standard adopted in 2017
 - CAEP/11: first non-volatile PM mass and number standard adopted in 2019
- U.S. EPA has adopted ICAO standards historically
 - Finalized first GHG regulation on aircraft in Dec 2020
- Standards are mostly technology following instead of being technology forcing

Aircraft Standard Flying Cycles

Aircraft Landing & Take-Off (LTO) Cycle

LTO cycle includes all airport activities that are below 3000 ft

2020 Mobile Source Strategies (MSS)

Operational efficiency improvement:

- De-rated take-offs (using less than maximum power on take-offs)
 - Research shows reduced thrust could significantly reduce emissions and fuel usage¹ (averages shown below), plus extending engine life

Fuel use: 13 percent reduction

NOx: 35 percent reduction

Black carbon: 59 percent reduction

Single engine taxiing (SET) shown to reduce taxiing fuel by 7
percent, and emissions by up to 14 percent²

¹ Koudis et al, 2017; ² Stettler et. al, 2018.

2020 Mobile Source Strategies (MSS)

- Operational efficiency improvement: Reduced taxiing time
 - Require real-time optimization of air traffic with constant feedback from all associated airports
 - Reductions depend on reduced time spent taxiing; reductions of up to 60 percent shown possible³
 - Zero-emission tow-out vehicles possible as future alternative
- Transition to zero emission auxiliary power units (APUs)
 - Ground power management could reduce emissions in near term, with longer term technology development needed for full zero emission APUs

³Deonandan, 2010

NOx Reductions Under Mobile Source Strategy Scenario in South Coast

- MSS Scenario assumes:
 - 25 percent NOx reduction during take-off for 90% of take-offs
 - 40 percent reduction in Taxi time for 90% of take-offs
 - Single engine taxiing for 90% of aircrafts
 - 40 percent reduction in APU usage

More stringent federal standards needed for additional emission reductions.

More Stringent Federal Standards Needed

- NOx emissions can be further reduced beyond the CAEP/8 standards
- FAA's Continuous Lower Energy, Emissions, and Noise (CLEEN) Program incentivizing new aircraft technologies and sustainable aviation fuels since 2010
- General Electric's TAPS II combustor (a lean burn system) could reduce LTO NOx emissions by 60% below CAEP/6, ~50% below CAEP/8
- Currently onboard Airbus 320neo, Boeing 737 MAX, and COMAC C919 aircraft

Source: TAPS II Combustor Final Report
https://www.faa.gov/about/office_org/headquarters_offices/apl/research/aircraft_technology/cleen/reports/media/taps_ii public final report.pdf

Sustainable Aviation Fuel (SAF)

- Drop-in substitutes of petroleum jet fuels that are derived from renewable feedstock
 - Interchangeable with conventional jet fuel when blended
 - Require no modifications to aircraft or fuel supply infrastructure
- Significant GHG, PM, and SOx emissions reductions
- ICAO envisions a significant increase in the use of SAFs to achieve carbon neutral growth from 2020

Source: Introduction to the ICAO Basket of Measures to Mitigate Climate Change

https://www.icao.int/environmental-

protection/Documents/EnvironmentalReports/2019/EN

VReport2019 pg111-115.pdf

Environmental Charges

 In Europe, some airports impose environmental charges to:

> incentivize the use of lower-emission aircraft by airlines

fund local mitigation measures

 60% of the busiest EU28+EFTA airports have implemented environmental charges

 Focused on local noise and/or air quality (NOx) impacts

Emission and noise charges

Impacts of COVID on Air Transportation

- Short-term emission reductions:
 - ~65% drop in aircraft activities in April when COVID hit
 - Slowly recovering to ~50% of previous activity level by Oct/Nov 2020
 - Older engines used less, newest/cleanest engines in service

Source: ASPM, FAA: https://aspm.faa.gov/apm/sys/main.asp 16

Contacts and Sources

Liang Liu

Air Resource Engineer, MSS lead Off-Road Diesel Analysis Section <u>Liang.Liu@arb.ca.gov</u>

David Chou

Manager, Lead on inventory
Off-Road Gasoline Inventory Section
David.Chou@arb.ca.gov

Cory Parmer

Manager, MSS manager
Off-Road Diesel Analysis Section
Cory.Parmer@arb.ca.gov

References

- 1. Koudis et al, 2017: Airport emissions reductions from reduced thrust takeoff operations https://doi.org/10.1016/j.trd.2017.02.004
- 2. Stettler et. al, 2018. The impact of single engine taxiing on aircraft fuel consumption and pollutant emissions https://www.cambridge.org/core/journals/aeronautical-journal/article/impact-of-single-engine-taxiing-on-aircraft-fuel-consumption-and-pollutant-emissions/495FF8A62B2949D921456BC07BA68A64
- 3. Deonandan, 2010: Evaluation of strategies for reducing taxi-out emissions at airports https://dspace.mit.edu/handle/1721.1/81189

2022 AQMP Mobile Source Working Group - Aircraft (Meeting #1)

February 4, 2021

By: EPA's Bryan Manning

Outline

- International Civil Aviation Organization
- Standard Development Timelines
- NOx Standards
- PM Standards
- CO2 Standards

International Civil Aviation Organization (ICAO)

- International Civil Aviation Organization is a specialized agency of the U.N.; a global organization that brings together States, manufacturers, NGOs, and industry organizations
 - Sets standards and regulations for aviation safety, security, efficiency, and environmental protection
 - Environmental organization is Committee on Aviation Environmental Protection (CAEP)
- US Delegation to ICAO is led by the Federal Aviation Administration
 - EPA acts as an advisor to FAA and contributes analysis to the working groups
- ICAO emissions standards are not self-implementing, but must be implemented through domestic regulation – via section 231 of the Clean Air Act in the U.S. (FAA, via CAA §232, has responsibility to prescribe regulations to ensure compliance)

Standard Development Timelines

- It can take 3-9 years to develop an international standard at ICAO
- Additional lead time is then needed to implement the standard

Aircraft NOx Standards

- CAEP's first aircraft engine NOx standards were adopted in 1981 (effective 1986), & standards have been tightened several times subsequently
 - 1992, 1998, 2004, and 2010 (effective at least 4 years later)
 - In 2010, CAEP adopted latest NOx standard for only new type engines (effective 2014); not in-production engines
 - Technology following / anti-backsliding standards
- This CAEP cycle (ends 2022) does not include further NOx stringency/requirements, and currently not expected in next CAEP cycle (ends 2025)

Aircraft PM Standards

- CAEP 2016: agreed to first aircraft engine non-volatile PM (nvPM) transition standard (all-pass) and test procedures
 - nvPM mass concentration standard provides equivalent visibility control as existing smoke visibility standard
 - In-production engine standard & reporting requirement, effective 2020
- EPA 2018: issued information collection request to domestically implement this CAEP 2016 requirement
- CAEP 2019: agreed to initial stringency of aircraft engine nvPM standards
 - nvPM mass and number standards, effective 2023
 - New type (anti-backsliding) and in-production (all-pass) standards
 - Replace ICAO's existing smoke number std. in 2023 for engines >26.7 kN
 - Reporting of nvPM loss corrections
- CAEP will review nvPM technology development during this CAEP cycle and potentially revisit standards during next cycle

Airplane CO2 Standards

- CAEP 2016: agreed to first airplane CO2 standards
 - Applies to new type airplanes in 2020 and in-production aircraft in 2028
 - Anti-backsliding and technology following standards
- EPA 2016: issued aircraft endangerment finding for six well-mixed GHGs
- EPA 2021: promulgated airplane GHG standards on that match ICAO/CAEP standards
- This CAEP cycle does not include further CO2 stringency, and it is uncertain for the next cycle

APPENDIX

Covered vs. Non-Covered Aircraft

Aircraft Included in ICAO CO₂ Standard

~90% of U.S. GHG emissions from aviation sector

Large Transport Jet

Large Turboprop

Aircraft Excluded from ICAO CO₂ Standard

~ 10% of U.S. GHG emissions from aviation sector

Small Turboprop

Small Business Jet

Helicopters

Military

Aircraft GHG Emissions Inventory

- Aircraft sector contributes ~13% of U.S. transportation GHG
 - Largest remaining transportation category not yet regulated for GHG.
 - 4% of total U.S. GHG emissions (not pictured). Total transportation is about a third.
- U.S. covered aircraft comprise the vast majority of aviation sector GHG -emissions (U.S. ~90%).
- CO₂ accounts for nearly all (~99% CO₂-eq) of well-mixed GHGs emitted from aircraft engines.
 - Less than 1% N₂O emitted; methane considered negligible from modern engines; no HFCs, PFCs, or SF₆ emitted from aircraft engines.

2018 GHG Emissions from US Transportation (MMT CO₂eq)

Source: EPA, 2020: Inventory of U.S. GHG Emissions and Sinks: 1990-2018

ICAO Terminology for Applicability

- New type aircraft are clean sheet designs which come out rarely. (No new type aircraft have yet been announced that would be affected by a 2020 standard)
- In-production aircraft are newly built aircraft using an existing design
 - Boeing 777 was a new type in 1995; in 2022, it will be upgraded with new engines and new wings, but still will not be a new type; thus, the 2020 standard will not apply

Federal Initiatives Addressing Aviation Emissions

Presented to: SCAQMD Aviation Workgroup

By: Ralph lovinelli

Date: February 4, 2021

Content

- U.S. Aviation Emissions Trends
- Fleet Mix Changes
- Aviation Emissions Source Reductions
- Aviation Emissions Tools

Economic Benefits of Aviation (pre-pandemic)

5.1% of U.S. GDP

10.6 Million
U.S. jobs

S

\$59.9 Billion of U.S. Trade Balance (exports-imports)

SOURCE: FAA Air Traffic Organization

Aviation equipment (aircraft, spacecraft, and related equipment) is largest export sector in U.S. economy accounting for over 8% of total exports.

SOURCE: U.S. International Trade Commission

Environmental Impacts of Aviation

U.S. Aviation Emissions Trends

U.S. Aviation Emissions Trends

SOURCE: Bureau of Transportation Statistics <u>www.bts.gov</u>

SOURCE: EPA GHG Sources and Sinks Report www.epa.gov

U.S. Aviation Emissions Trends

RTK = Revenue Ton Kilometers

 $SOURCE: Bureau\ of\ Transportation\ Statistics\ \underline{www.bts.gov}$

Sustainable Aviation Fuel (SAF)

- Five years of sustained & increasing commercial use
- 80+% reduction in CO₂ emissions
- No sulfur emissions
- Very low particulate matter emissions

Fleet Mix Changes

Modern Airplanes in California?

Number of Active Aircraft – All US Airlines

U.S. Regional Airplanes: Dec2019 v. Dec2020

XX = airplanes entering/leaving the fleet, YY% increase/reduction relative to total number of airplane type registered by US airlines

U.S. Single Aisle: Dec2019 v. Dec2020

XX = airplanes entering/leaving the fleet, YY% increase/reduction relative to total number of airplane type registered by US airlines

U.S. Twin Aisle: Dec2019 v. Dec2020

XX = airplanes entering/leaving the fleet, YY% increase/reduction relative to total number of airplane type registered by US airlines

Aviation Emissions Source Reductions

Technology-based Regulations

United Nations: International Civil Aviation Organization

(ICAO)

Creates technology-based international standards...

United States: Environmental Protection Agency (EPA)

Sets regulatory levels...

Title 40 Code of Federal Regulations Part 87

United States: Federal Aviation Administration (FAA)

Enforces regulatory levels...

Title 14
Code of Federal
Regulations
Part 34

Continuous Lower Energy, Emissions & Noise (CLEEN) Program

- FAA led public-private partnership with 100% cost share from industry
- Reducing fuel burn, emissions and noise via aircraft and engine technologies and alternative jet fuels
- Conducting ground and/or flight test demonstrations to accelerate maturation of certifiable aircraft and engine technologies
- FAA in the process of finalizing the third phase of CLEEN with an announcement coming in the coming weeks...

	Phase I (Completed)	Phase II (Ongoing)
Time Frame	2010-2015	2016-2020
FAA Budget	~\$125M	~\$100M
Noise Reduction Goal	25 dB cumulative noise reduction cumulative to Stage 5	
Fuel Burn Goal	33% reduction	40% reduction
NO _x Emissions Reduction Goal	60% landing/take-off NO _X emissions	75% landing/take-off NO _X emissions (-70% re: CAEP/8)
Entry into Service	2018	2026

CLEEN Phase II Technologies

Airframe **Engine Core** Aircraft Systems ✓ Aurora: D8 Double Bubble ✓ GE: TAPS III Combustor ✓ GE: FMS **Fuselage** Honeywell: Compact Combustor System **Technologies** Boeing: Structurally Honeywell: Advanced Turbine Blade GE: MESTANG **Efficient Wing** Outer Air Seal ✓ Pratt & Whitney: High Pressure Compressor Aero-Efficiency ✓ Pratt & Whitney: High Pressure Turbine Aero-Efficiency & Durability Rolls-Royce: Advance RQL Combustor NO. Nacelle, Fan, and Bypass Noise ✓ Boeing: Compact Nacelle – ground test ✓ Completed Effort Delta Tech Ops / MCT: Leading Edge Continues in FY21 **Protective Blade Coatings** o GE: Low Pressure Ratio Advanced Acoustics Collins Aerospace: Nacelle Technologies

CLEEN Technologies that have entered into the fleet:

Boeing

Adaptive Trailing Edge

- ~ 2% fuel burn reduction
- ~ 1.7 EPNdB cum noise reduction in some single and twin aisles
- Boeing has adopted technologies from this project for use in commercial and defense products.

Delta/MDS/America's Phenix

Leading Edge Protective Coating for Turbofan Blades

- ~1% fuel savings for Mainline and Regional Commercial carriers
- Currently in service in the Delta fleet for operational evaluation.

General Electric

TAPS II Combustor

- > 60% margin to CAEP/6 LTO NOx achieved.
- CLEEN Phase I NOx goal met.
- Entered fleet in 2016 on all LEAP engines for Airbus A320 Neo and Boeing 737MAX

FMS/Engine and FMS/ATM Integration

0.7-1.0% fuel burn reduction

 Entered into service on the LEAP engine on Boeing 737MAX, Airbus A320 Neo aircraft, and soon on the GE9X engine on Boeing 777X

Twin Annular Pre-Swirler (TAPS) III Combustion System

- ~ 35% margin to the more stringent CAEP/8 (at 55 OPR) LTO NOx achieved.
- Entering the fleet on the GE9X engine on Boeing 777X

Improved tools and processes that have resulted from CLEEN technology maturation are leading to lower noise and emissions

Estimated Fleet-Level CO₂ Reductions

Cumulative CLEEN
CO₂ Savings relative
to Evolutionary
Scenario (Million
Metric Tonnes)

Equivalent to removing 3.05 million cars from the road from 2020 to 2050

Note: Results assume a CO₂ production rate of 3.15kg CO₂/kg Fuel. Analysis includes CLEEN Phase II fuel burn technologies modeled to date.

Aviation Emissions Tools

Aviation Environmental Design Tool (AEDT)

Global gold standard, in 46 countries

Features

- Computes noise, fuel burn, and emissions simultaneously, and local air quality
- Physics-based model aircraft modeled in four dimensions
- Able to conduct analyses at airport, regional, national, and global scales

Applications

- Air space and airport design and planning (e.g., National Environmental Policy Act reviews)
- International Civil Aviation Organization (ICAO) Committee on Aviation Environmental Protection (CAEP) analyses
- Assessing benefits from introducing NextGen and new aircraft and engine technologies (e.g., from FAA CLEEN and NASA Programs)
- Emissions Inventories State Implementation Plans, etc.

AEDT System Overview

User
Inputs Via
User
Interface
and
External
Files

System Databases

AEDT

Summary

- FAA tracks trends in emissions and fuel burn
- Active development of cleaner & quieter technology with the CLEEN program
- COVID offers lower operations and younger, modern fleets
- AEDT is the premier tool for accurate emissions inventories

Ralph Iovinelli Manager, Emissions Division FAA Office of Environment and Energy Washington, DC

ralph.iovinelli@faa.gov