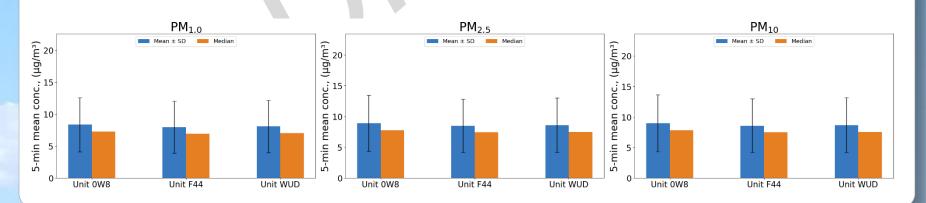
Field Evaluation Aurassure Trust

AQ-SPEC
Air Quality Sensor Performance Evaluation Center

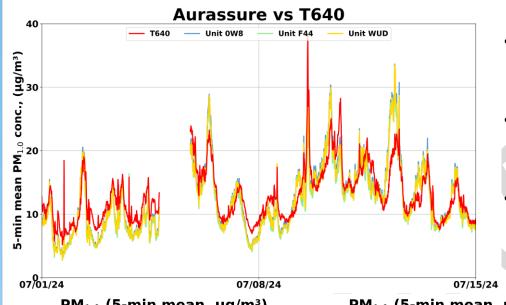
Background

- From 06/14/2024 to 08/14/2024, three Aurassure Trust multi-sensor units ("Lite" configuration; hereinafter Aurassure) were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instrument measuring the same pollutants.
- Aurassure(3 units tested):
 - ➤ PM Optical (Sensirion SPS30, non-FEM)
 - Each unit measures: PM_{1.0} (μg/m³), PM_{2.5} (μg/m³), PM₁₀ (μg/m³), T (°C), RH (%)
 - ➤ Unit cost: \$525
 - ➤ Time resolution: 1-min
 - ➤ Units IDs: 0W8, F44, and WUD

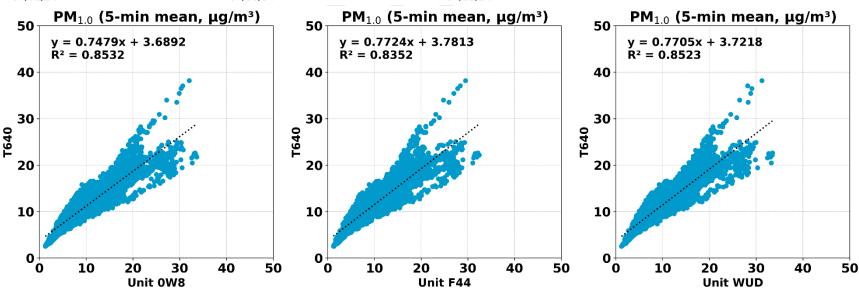
- South Coast AQMD Reference instruments:
 - PM instrument (Teledyne API T640; FEM PM_{2.5}, hereinafter FEM T640)
 - Cost: \$21,000
 - > Time resolution: 1-min
 - \blacktriangleright Measures PM_{1.0}, PM_{2.5}, PM₁₀ (μ g/m³)
 - Met station (T, RH, P, WS, WD)
 - > Cost: ~\$5,000
 - ➤ Time resolution: 1-min

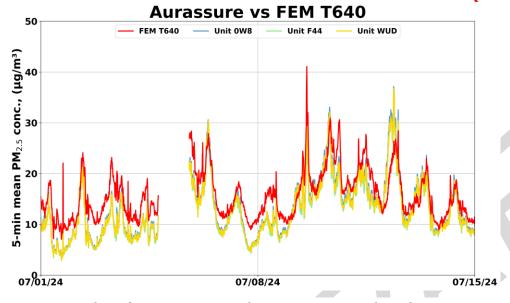

Particulate Matter (PM) in Aurassure

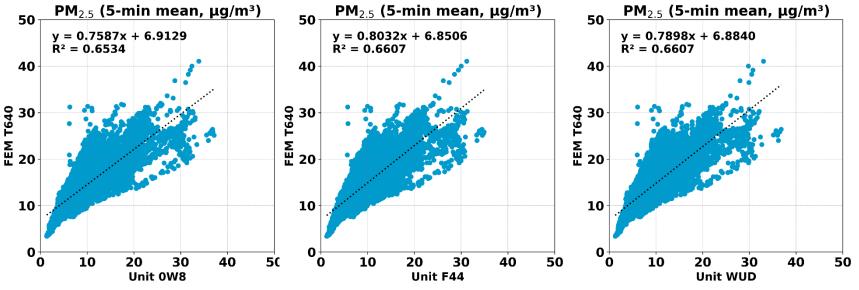
Data validation & recovery

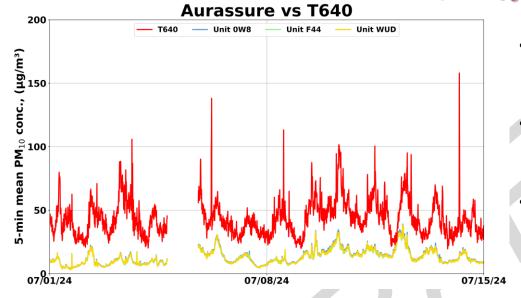

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 0W8, Unit F44 and Unit WUD was ~99.8% for all PM measurements
- Data related to 4th of July activities were excluded from data analysis for all sensors and reference instruments

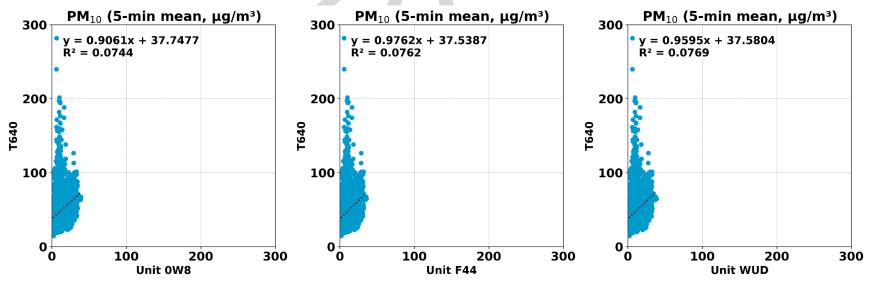
Aurassure; intra-model variability

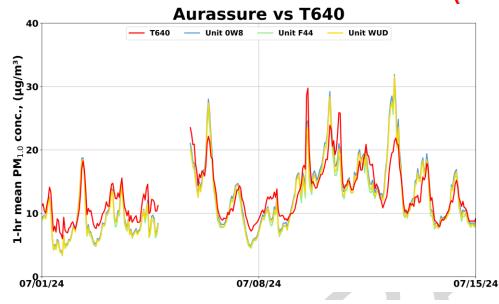

- Absolute intra-model variability was $\sim 0.2 \ \mu g/m^3$ for PM_{1.0}, PM_{2.5} and PM₁₀ (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~2.5 %, ~2.3 % and ~2.3 % for $PM_{1.0}$, $PM_{2.5}$ and PM_{10} , respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

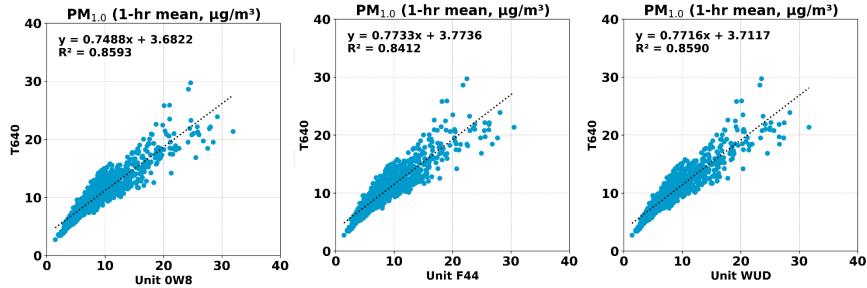

Aurassure vs T640 (PM_{1.0}; 5-min mean)

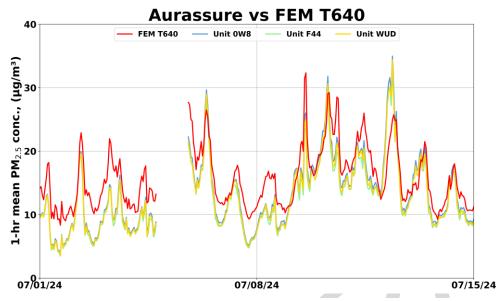

- The Aurassure sensors showed strong correlations with the corresponding T640 data (0.83 < R² < 0.86)
- Overall, the Aurassure sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Aurassure sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

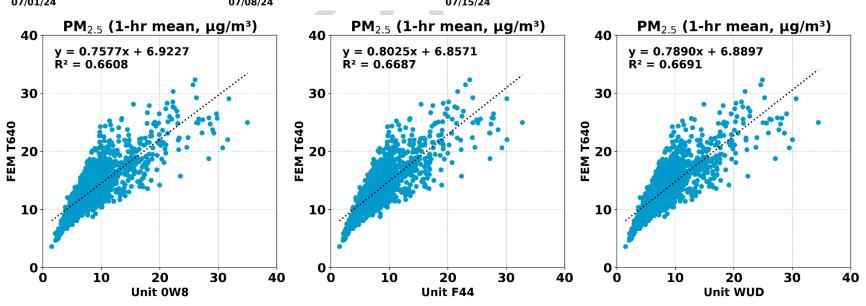

Aurassure vs FEM T640 (PM_{2.5}; 5-min mean)

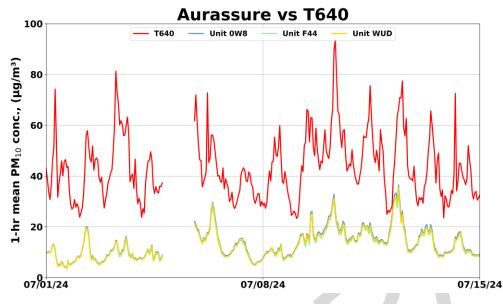

- The Aurassure sensors showed moderate correlations with the corresponding FEM T640 data (0.65 < R² < 0.67)
- Overall, the Aurassure sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Aurassure sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

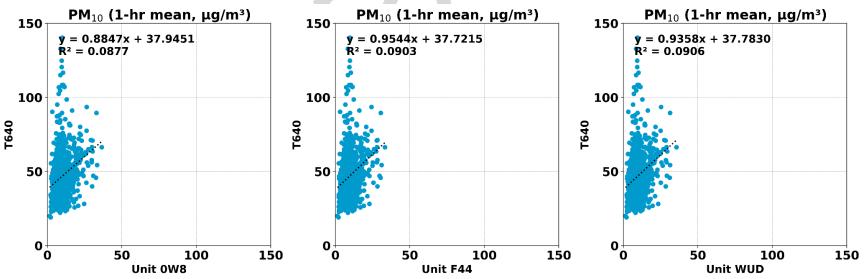

Aurassure vs T640 (PM₁₀; 5-min mean)

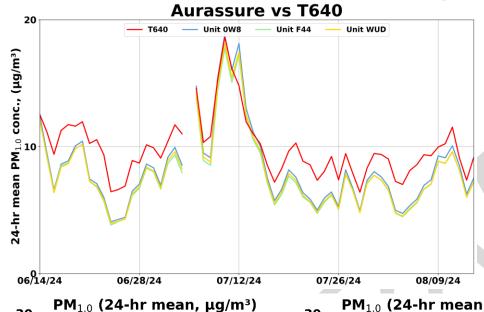

- The Aurassure sensors showed no correlations with the corresponding T640 data (0.07 < R² < 0.08)
- Overall, the Aurassure sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Aurassure sensors did not seem to track the PM₁₀ diurnal variations as recorded by T640

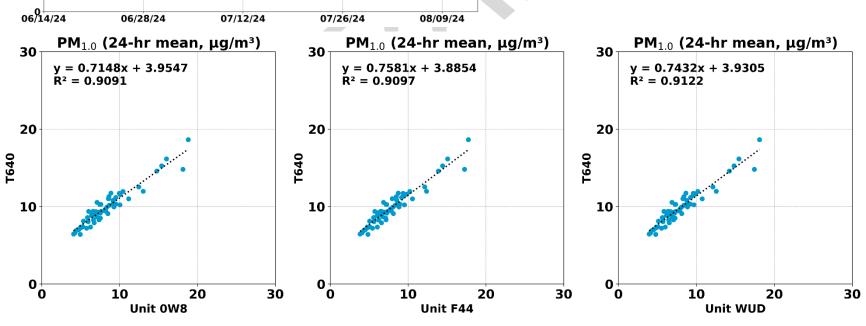

Aurassure vs T640 (PM_{1.0}; 1-hr mean)

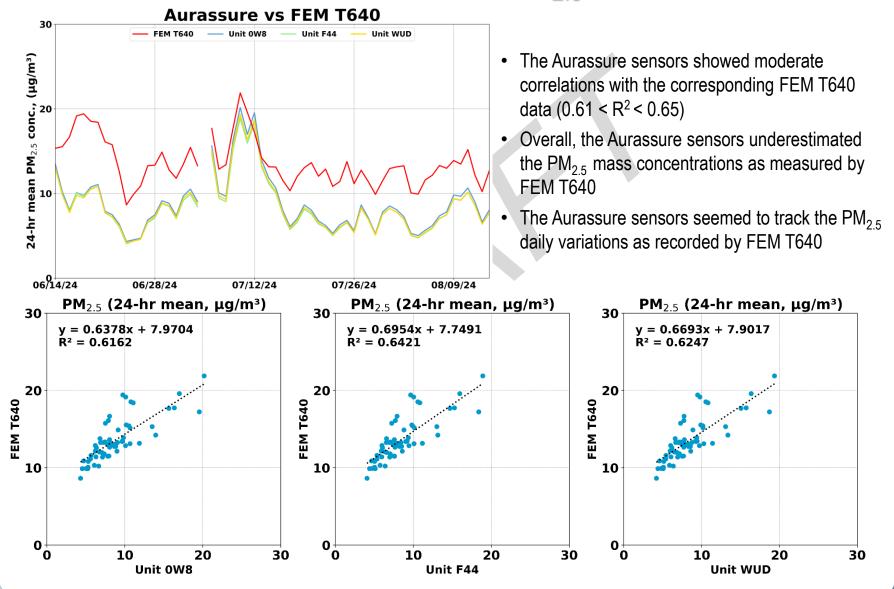

- The Aurassure sensors showed strong correlations with the corresponding T640 data (0.84 < R² < 0.86)
- Overall, the Aurassure sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Aurassure sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

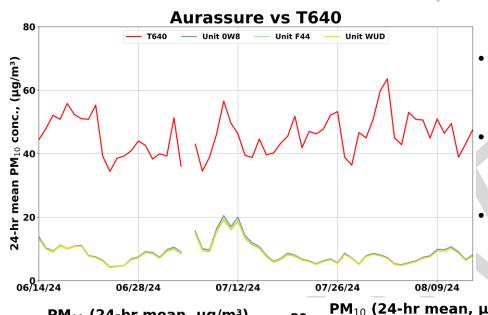

Aurassure vs FEM T640 (PM_{2.5}; 1-hr mean)

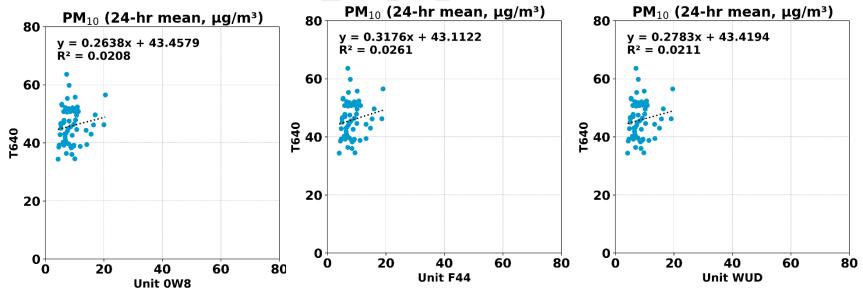

- The Aurassure sensors showed moderate correlations with the corresponding FEM T640 data (0.66 < R² < 0.67)
- Overall, the Aurassure sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Aurassure sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640


Aurassure vs T640 (PM₁₀; 1-hr mean)


- The Aurassure sensors showed no correlations with the corresponding T640 data (0.08 < R² < 0.10)
- Overall, the Aurassure sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Aurassure sensors did not seem to track the PM₁₀ diurnal variations as recorded by T640


Aurassure vs T640 ($PM_{1.0}$; 24-hr mean)


- The Aurassure sensors showed very strong correlations with the corresponding T640 data (0.90 < R² < 0.92)
- Overall, the Aurassure sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Aurassure sensors seemed to track the PM_{1.0} daily variations as recorded by T640


Aurassure vs FEM T640 (PM_{2.5}; 24-hr mean)

Aurassure vs T640 (PM₁₀; 24-hr mean)

- The Aurassure sensors showed no correlations with the corresponding T640 data (0.02 < R² < 0.03)
- Overall, the Aurassure sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Aurassure sensors did not seem to track the PM₁₀ daily variations as recorded by T640

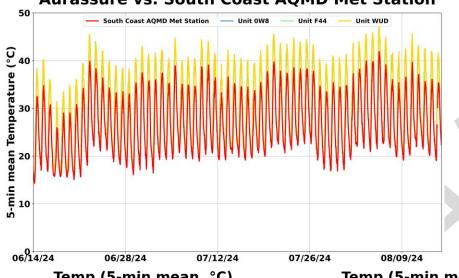
Summary: PM

	Sensor	s, PM _{1.0}	Aurassure vs 1640, PM _{1.0}						1640 (PM _{1.0} , μg/m³)		
	Average (μg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (μg/m³)	RMSE ³ (μg/m³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	8.1	4.1	0.84 to 0.85	0.75 to 0.77	3.7 to 3.8	-2.0 to -1.6	2.0 to 2.3	2.3 to 2.6	9.9	3.4	2.5 to 38.2
1-hr	8.1	4.1	0.84 to 0.86	0.75 to 0.77	3.7 to 3.8	-2.0 to -1.6	2.0 to 2.3	2.3 to 2.6	9.9	3.4	2.8 to 29.7
24-hr	8.1	3.1	0.91	0.71 to 0.76	3.9 to 4.0	-2.0 to -1.6	1.7 to 2.1	2.0 to 2.2	9.9	2.4	6.4 to 18.6
	Averaç Sensors		Aurassure vs FEM T640, PM _{2.5}						FEM T640 (PM _{2.5} , μg/m³)		
	Average	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (μg/m³)	MAE ² (μg/m ³)	RMSE ³ (µg/m³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	8.7	4.4	0.65 to 0.66	0.76 to 0.80	6.9 to 6.9	-5.2 to -4.8	5.0 to 5.3	5.5 to 5.8	13.7	4.3	3.4 to 41.1
1-hr	8.7	4.4	0.66 to 0.67	0.76 to 0.80	6.9	-5.2 to -4.8	5.0 to 5.3	5.5 to 5.8	13.7	4.2	3.6 to 32.3
24-hr	8.6	3.3	0.62 to 0.64	0.64 to 0.70	7.7 to 8.0	-5.2 to -4.8	4.8 to 5.2	5.2 to 5.5	13.6	2.8	8.6 to 21.9
	Average of 3 Sensors, PM ₁₀		Aurassure vs T640, PM ₁₀						T640 (PM ₁₀ , μg/m³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (μg/m³)	MAE ² (μg/m ³)	RMSE ³ (µg/m³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	8.7	4.5	0.07 to 0.08	0.91 to 0.98	37.5 to 37.7	-37.3 to -36.9			45.9	15.5	14.6 to 281.8
1-hr	8.7	4.5	0.09	0.88 to 0.95	37.7 to 37.9	-37.3 to -36.9	36.9 to 37.3	39.2 to 39.6	45.9	13.8	19.1 to 140.3
24-hr	8.7	3.4	0.02 to 0.03	0.26 to 0.32	43.1 to 43.5	-37.3 to -36.9	36.9 to 37.3	37.5 to 37.9	45.8	6.4	34.4 to 63.6

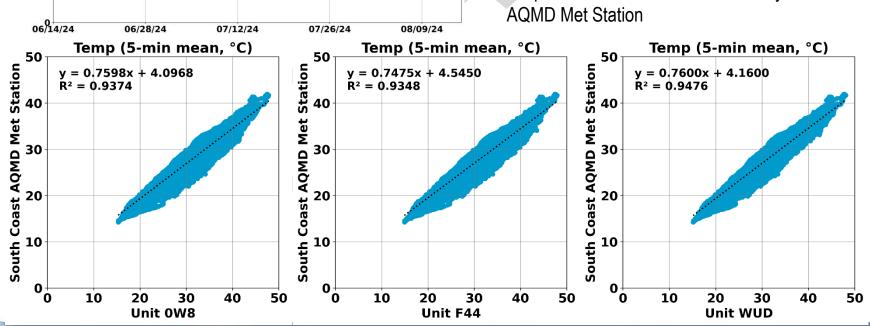
¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

Average of 3

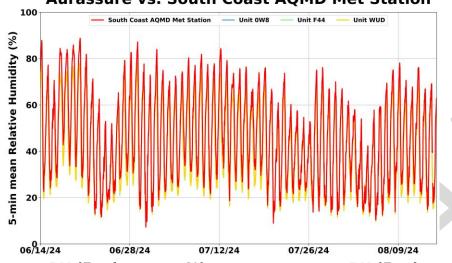
 $T640 (DM_{\odot} = \mu a/m^3)$

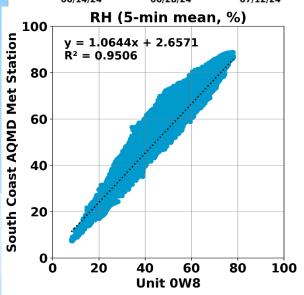

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

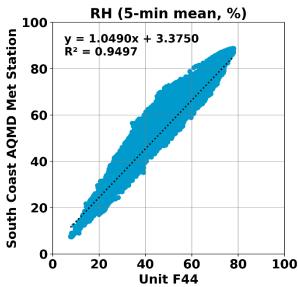
³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

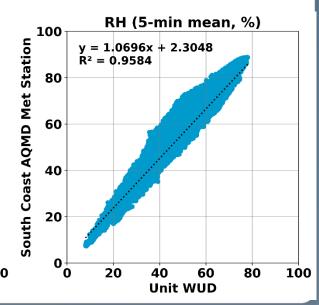

Aurassure vs South Coast AQMD Met Station (Temp;

5-min mean)
Aurassure vs. South Coast AQMD Met Station




- The Aurassure sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data $(0.93 < R^2 < 0.95)$
- Overall, the Aurassure sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Aurassure sensors seemed to track the diurnal temperature variations as recorded by South Coast **AQMD Met Station**




Aurassure vs South Coast AQMD Met Station (RH; 5-min mean) Aurassure vs. South Coast AQMD Met Station

- Aurassure sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data $(0.94 < R^2 < 0.96)$
- Overall, the Aurassure sensors underestimated the RH measurement as recorded by South Coast **AQMD Met Station**
- The Aurassure sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

Discussion

- The three **Aurassure** sensors' data recovery for all PM fractions was ~99.8%.
- Absolute intra-model variability was ~0.2 μg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀
- $PM_{1.0}$ mass concentrations measured by the Aurassure sensors showed strong correlations with the corresponding T640 $PM_{1.0}$ data (0.84 < R^2 < 0.86, 1-hr mean). The sensors underestimated $PM_{1.0}$ mass concentrations as measured by T640.
- $PM_{2.5}$ mass concentrations measured by the Aurassure sensors showed moderate correlations with the corresponding FEM T640 $PM_{2.5}$ data (0.66 < R^2 < 0.67, 1-hr mean). The sensors underestimated $PM_{2.5}$ mass concentrations as measured by FEM T640.
- PM_{10} mass concentrations measured by the Aurassure sensors showed no correlations with the corresponding T640 PM_{10} data (0.08 < R^2 < 0.10, 1-hr mean). The sensors underestimated PM_{10} mass concentrations as measured by T640.
- Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station T and RH data, respectively (R² ~ 0.94 for T and R² ~ 0.95 for RH) and overestimated the T and underestimated the RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by South Coast AQMD staff for this evaluation.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- These results are still preliminary