CALIFORNIA AIR RESOURCES BOARD

2022-2023 Eastern Coachella Valley Ambient Air Pesticide Monitoring Report

Prepared by Ivy Osornio, Air Pollution Specialist Community Air Monitoring South Section Community Air Monitoring Branch Monitoring and Laboratory Division

December 2023

This report has been reviewed by the staff of the California Air Resources Board (CARB) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Air Resources Board, nor does mention of trade names or commercial products constitute endorsement or recommendation for use.

Monitoring Report Approval

Report Title: 2022-2023 Eastern Coachella Valley Ambient Air Pesticide Monitoring Report

Project Lead: Ivy Osornio, Air Pollution Specialist

Approval: The following air monitoring report has been reviewed and approved by the Community Air Monitoring Branch.

1 In

Fernando Amador, Manager Community Air Monitoring South Section

12/7/2023

Date

Kenneth Stroud

Kenneth Stroud, Chief Community Air Monitoring Branch

12/13/2023

Date

List of Acronyms

AQMDAir Quality Management DistrictCARBCalifornia Air Resources BoardCERPCommunity Emissions Reduction PlanCSCCommunity Steering CommitteeDPRDepartment of Pesticide RegulationECVEastern Coachella ValleyETMElapsed time meterGC/MSGas chromatograph/mass spectrometerGC/MS/MSGas chromatograph/triple quadrupole mass spectrometerMFSMecca Fire StationMITCmethyl isothiocyanateMLDCARB Monitoring and Laboratory DivisionNLBCARB Northern Laboratory BranchOEHHAAOffice of Environmental Health Hazard Assessmentppbguality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal desorptionTSXAD* sorbent tube	1,3-D	1,3-dichloropropene
CERPCommunity Emissions Reduction PlanCSCCommunity Steering CommitteeDPRDepartment of Pesticide RegulationECVEastern Coachella ValleyETMElapsed time meterGC/MSGas chromatograph/mass spectrometerGC/MS/MSGas chromatograph/triple quadrupole mass spectrometerMFSMecca Fire StationMITCmethyl isothiocyanateMLDCARB Monitoring and Laboratory DivisionNLBOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmThermal desorptionTFSThermal desorptionTFSThermal desorption	AQMD	Air Quality Management District
CSCCommunity Steering CommitteeDPRDepartment of Pesticide RegulationECVEastern Coachella ValleyETMElapsed time meterGC/MSGas chromatograph/mass spectrometerGC/MS/MSGas chromatograph/triple quadrupole mass spectrometerMFSMecca Fire StationMITCmethyl isothiocyanateMLDCARB Monitoring and Laboratory DivisionNLBOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	CARB	California Air Resources Board
DPRDepartment of Pesticide RegulationECVEastern Coachella ValleyETMElapsed time meterGC/MSGas chromatograph/mass spectrometerGC/MS/MSGas chromatograph/triple quadrupole mass spectrometerMFSMecca Fire StationMITCmethyl isothiocyanateMLDCARB Monitoring and Laboratory DivisionNLBCARB Northern Laboratory BranchOEHHAOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	CERP	Community Emissions Reduction Plan
ECVEastern Coachella ValleyETMElapsed time meterGC/MSGas chromatograph/mass spectrometerGC/MS/MSGas chromatograph/triple quadrupole mass spectrometerMFSMecca Fire StationMITCmethyl isothiocyanateMLDCARB Monitoring and Laboratory DivisionNLBOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitscccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	CSC	Community Steering Committee
ETMElapsed time meterGC/MSGas chromatograph/mass spectrometerGC/MS/MSGas chromatograph/triple quadrupole mass spectrometerMFSMecca Fire StationMITCmethyl isothiocyanateMLDCARB Monitoring and Laboratory DivisionNLBOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	DPR	Department of Pesticide Regulation
GC/MSGas chromatograph/mass spectrometerGC/MS/MSGas chromatograph/triple quadrupole mass spectrometerMFSMecca Fire StationMITCmethyl isothiocyanateMLDCARB Monitoring and Laboratory DivisionNLBCARB Northern Laboratory BranchOEHHAOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	ECV	Eastern Coachella Valley
GC/MS/MSGas chromatograph/triple quadrupole mass spectrometerMFSMecca Fire StationMITCmethyl isothiocyanateMLDCARB Monitoring and Laboratory DivisionNLBCARB Northern Laboratory BranchOEHHAOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	ETM	Elapsed time meter
MFSMecca Fire StationMITCmethyl isothiocyanateMLDCARB Monitoring and Laboratory DivisionNLBCARB Northern Laboratory BranchOEHHAOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	GC/MS	Gas chromatograph/mass spectrometer
MITCmethyl isothiocyanateMLDCARB Monitoring and Laboratory DivisionNLBCARB Northern Laboratory BranchOEHHAOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	GC/MS/MS	Gas chromatograph/triple quadrupole mass spectrometer
MLDCARB Monitoring and Laboratory DivisionNLBCARB Northern Laboratory BranchOEHHAOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	MFS	Mecca Fire Station
NLBCARB Northern Laboratory BranchOEHHAOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	MITC	methyl isothiocyanate
OEHHAOffice of Environmental Health Hazard Assessmentppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	MLD	CARB Monitoring and Laboratory Division
ppbparts per billionQCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	NLB	CARB Northern Laboratory Branch
QCQuality ControlRLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	OEHHA	Office of Environmental Health Hazard Assessment
RLReporting limitsccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	ppb	parts per billion
sccmStandard cubic centimeters per minuteTDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	QC	Quality Control
TDThermal desorptionTFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	RL	Reporting limit
TFSThermal Fire StationTSTorres Martinez Desert Cahuilla Indians air monitoring station	sccm	Standard cubic centimeters per minute
TS Torres Martinez Desert Cahuilla Indians air monitoring station	TD	Thermal desorption
-	TFS	Thermal Fire Station
XAD XAD [®] sorbent tube	TS	Torres Martinez Desert Cahuilla Indians air monitoring station
	XAD	XAD [®] sorbent tube

Executive Summary

Eastern Coachella Valley Ambient Air Pesticide Monitoring Report

As part of the Eastern Coachella Valley (ECV) Community Emissions Reduction Plan (CERP) Chapter 5c, Table 1, Action D¹, the California Air Resources Board (CARB) conducted air monitoring for the following pesticides: methyl isothiocyanate (MITC); 1,3-dichloropropene (1,3-D); and chloropicrin within the Assembly Bill 617 ECV community from November 28, 2022 to February 24, 2023. The monitoring was conducted throughout the community close to sensitive receptors and pesticide application areas. There were three sampling locations throughout, including two at county fire stations and one at the Torres Martinez Desert Cahuilla Indians air monitoring site.

Air samples of 24-hours in duration were collected for 4 days per week for 13 weeks. Three primary samplers were set up in the communities of Thermal, Mecca, and Martinez. An additional sampler for quality control (QC) was set up in Mecca. Samples were collected on two different media based on the pesticide(s) sampled for; MITC and 1,3-D were collected on thermal desorption (TD) tubes with a flow rate of 25 standard cubic centimeters per minute (sccm); and chloropicrin was collected on XAD-4 tubes with a flow rate of 100 sccm. The samples were analyzed by a gas chromatograph/mass spectrometer (GC/MS) or gas chromatograph/triple quadrupole mass spectrometer (GC/MS/MS) by CARB's Northern Laboratory Branch (NLB) in Sacramento.

MITC Results

Of the 141 valid primary samples, 70 (49.6%) had MITC concentrations above the reporting limit of 0.03 μ g/m³. MITC concentrations ranged from 0.03 to 2.19 μ g/m³. The three samples with the highest concentrations were from the Torres Martinez air monitoring site on 12/15/22 (2.19 μ g/m³), 12/20/22 (1.62 μ g/m³), and 2/13/23 (1.71 μ g/m³). The results are summarized below:

Site	Number of Samples Collected	Invalid ²	Below the Reporting Limit	At or Above the Reporting Limit
Mecca Fire Station	52	3	19	30
Torres Martinez air monitoring site	52	6	22	24
Thermal Fire Station	52	6	30	16
Total	156	15	71	70

1,3-D Results

Of the 141 valid 1,3-D primary samples collected, none of the concentrations were above the reporting limit of 0.25 μ g/m³. The results are summarized below:

Site	Number of Samples Collected	Invalid	Below the Reporting Limit	At or Above the Reporting Limit
Mecca Fire Station	52	3	49	0
Torres Martinez air monitoring site	52	6	46	0
Thermal Fire Station	52	6	46	0
Total	156	15	141	0

¹ South Coast Air Quality Management District (July 2021) Eastern Coachella Valley Community Emissions Reduction Plan, Final.

http://www.aqmd.gov/docs/default-source/ab-617-ab-134/steering-committees/eastern-coachella-valley/final-cerp/final-cerp-july-2021.pdf?sfvrsn=9 ² An invalid sample cannot be analyzed due to falling outside of the acceptable sample parameters for any of the following reasons: flow rate and/or sample run time out of specifications, and field issues.

Chloropicrin Results

Of the 139 valid chloropicrin primary samples collected, two (1.4%) of the concentrations were above the reporting limit of 0.06 μ g/m³. Both samples were collected at the Thermal fire station on 1/20/23 (0.17 μ g/m³) and 2/9/23 (0.39 μ g/m³). The results are summarized below:

Site	Number of Samples Collected	Invalid	Below the Reporting Limit	At or Above the Reporting Limit
Mecca Fire Station	52	3	49	0
Torres Martinez air monitoring site	52	4	48	0
Thermal Fire Station	52	10	40	2
Total	156	17	137	2

Quality Control Results

Quality control results were within acceptable ranges and in line with previous CARB MLD pesticide studies.

Next Steps

Per Chapter 5c, Table 2, Action A of the CERP, DPR and OEHHA will evaluate potential community health risks/impacts and prepare a document with their findings based on the results presented in this report and other relevant health information.

<u>Section</u>

	oring Report Approval	
List o	Acronyms	ii
Execu	tive Summary	. iii
1. Ba	ckground	. 6
	npling Sites	
3. M	ethods	. 9
4. De	viations from Protocol	12
5. Re	sults	12
6. Q	ality Control Results	20

TABLES

Fable 1 - Sampler Locations	7
Fable 2 - ECV Monthly Pesticide Use in Pounds (2017-2019)	11
Fable 3 - Pesticide Reporting Limits	12
Table 4 - MITC Results	12
Table 5 - 1,3-D Results	
Fable 6 - Chloropicrin Results	13
Fable 7 - Mecca Results	16
Fable 8 - Torres Martinez Air Monitoring Site Results	17
Fable 9 - Thermal Fire Station Results	18
Table 10 - Collocated MITC Relative Percent Difference	
Fable 11 - Collocated 1,3-D Relative Percent Difference	
Fable 12 - Collocated Chloropicrin Relative Percent Difference	
Field Spike Recovery	22
Field Blank Quality Control Results	23

FIGURES

Figure 1 - Sensitive Receptors and Residential Regions within the Eastern Coachella Valley	8
Figure 2 - Sampler at the Mecca Fire Station Site	8
Figure 3 - ECV Monthly Pesticide Use Chart (2017-2019)	11
Figure 4 - Mecca Fire Station Valid Samples	14
Figure 5 - Torres Martinez Air Monitoring Site Valid Samples	14
Figure 6 - Thermal Fire Station Valid Samples	14

ATTACHMENTS

Attachment A: Sampler Photos Attachment B: Mass Flow Meter Certification Report Attachment C: Monitoring Field Log Sheets Attachment D: Sampling Protocol Attachment E: Laboratory Standard Operating Procedures

1. Background

In December 2019, the Eastern Coachella Valley (ECV) was designated as one of Assembly Bill 617 (AB617) Year 2 Communities. The ECV community includes the City of Coachella, the City of Indio, a small portion of the City of La Quinta, and the unincorporated areas of Thermal, Oasis, Mecca, and North Shore, and is home to approximately 81,000 people.³ Residential centers in the rural community are surrounded by areas zoned for agricultural use.

The ECV Community Steering Committee (CSC) was formed in January 2020 and consists of members representing current residents, community organizations, businesses, agencies, schools/universities, and offices of elected officials.

The CSC identified pesticides as one of the top air quality priorities given the amount of agricultural activity in the ECV. CSC concerns include unknown health effects from pesticides and potential toxicity from possible exposure. As part of the Community Emissions Reduction Plan (CERP), the South Coast Air Quality Management District (South Coast AQMD) held public meetings, workshops, and communicated with committee members and responsible local, county, and state agencies, including the California Air Resources Board (CARB), to develop actions and details to address the community's concerns about pesticide emissions and exposures.

The purpose for air monitoring was to measure the concentrations of three prioritized pesticides in the community. A secondary purpose for air monitoring was to engage with the community on their health concerns possibly attributable to air pollution. This community engagement includes sharing an understanding and expertise in pesticide monitoring to potentially address some human health impacts of community concern with the South Coast AQMD and the ECV community.

The monitored pesticides are the result of research⁴ by CARB, the California Office of Environmental Health Hazard Assessment (OEHHA), and the Department of Pesticide Regulation (DPR) which took into consideration pesticide use reporting data, CalEnviroScreen 4.0 pesticide indicators, and information from peer-reviewed literature and publicly accessible data.

The prioritized pesticides are:

- Methyl Isothiocyanate (MITC) was monitored as it is the main breakdown product with pesticidal activity of metam sodium, metam potassium, and dazomet.
- 1,3-Dichloropropene (1,3-D)
- Chloropicrin

Each of these pesticides is used as a fumigant, meaning its pesticidal activity is in the vapor or gas phase, and is used to prepare the soil for planting. Each is also a designated Toxic Air Contaminant.⁵ MITC is generally used for controlling a variety of fungi and nematodes. Crops that use MITC include peppers (fruiting), watermelons, grapes, lemons, and corn. Its chemical abstract service (CAS) registry number is 556-61-6. 1,3-D is used to control insects, nematodes, and other organisms in the soil. 1,3-D is applied to crops such as grapes, lemons, peppers (fruiting), watermelons, strawberries, and peaches. Its CAS registry number is 542-75-6. Chloropicrin is also used to control soil borne fungi, diseases and nematodes. Its CAS registry number is 76-06-2. Chloropicrin is used as a fumigant for watermelons and strawberries.

A total of 527 valid samples which included 421 primary samples and 106 quality control samples (33 collocated samples, 34 field spikes, and 39 field blanks) were collected from November 28, 2022 to February 24, 2023. Monitoring consisted of four sequential 24-hour sampling periods for each of the 13-week study.

³ 2019 Community Recommendations Staff Report – CARB (https://ww2.arb.ca.gov/sites/default/files/2019-

^{12/2019}_community_recommendations_staff_report_november_8_acc_3.pdf)

⁴ February 2022, Pesticide prioritization and Monitoring in the Eastern Coachella Valley. Available upon request.

⁵ AB 1807 - Toxics Air Contaminant Identification and Control | California Air Resources Board/Department of Pesticide Regulation

⁽https://ww2.arb.ca.gov/resources/documents/ab-1807-toxics-air-contaminant-identification-and-control)

2. Sampling Sites

The locations for air monitoring were selected in consultation with the ECV monitoring working team and CSC, and by evaluating locations near sensitive receptors, areas of concern, and residential neighborhoods downwind of known pesticide use areas. The three monitoring locations are identified in Table 1 along with the global positioning satellite coordinates of each sampler. Coordinates were obtained from Google Maps, which uses the World Geodetic Systems 1984 (WGS84) datum.

Figure 1 shows an aerial view of sensitive receptors and residential regions within the ECV community boundaries along with the locations of the sampling sites. Figure 2 shows a sampler set up at the Mecca Fire Station site.

Photos of the samplers at each site can be seen in Attachment A.

Site Name	Address	GPS Coordinates (WGS84)
Mecca Fire Station 40 (Quality Control)	91350 66th Ave, Mecca, CA 92254	33° 34' 11.0388'' N 116° 4' 22.1088'' W
Torres Martinez Desert Cahuilla Indians air monitoring station	66725 Martinez Rd, Thermal, CA 92274	33° 33' 40.1508'' N 116° 9' 12.3084'' W
Thermal Fire Station	86911 Avenue 58, Thermal, CA 92274	33° 37' 36.3612'' N 116° 8' 51.0504'' W

 TABLE 1 - SAMPLER LOCATIONS

FIGURE 1 - SENSITIVE RECEPTORS AND RESIDENTIAL REGIONS WITHIN THE EASTERN COACHELLA VALLEY

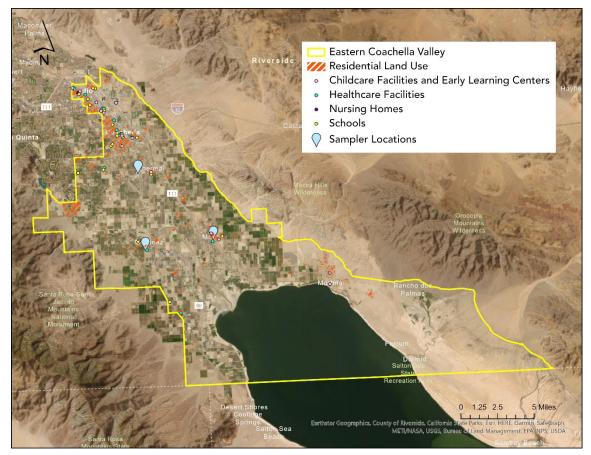


FIGURE 2 - SAMPLER AT THE MECCA FIRE STATION SITE

3. Methods

The study began on Monday, November 28, 2022 and the final sample was retrieved on February 25, 2023. Monitoring occurred for four continuous 24-hour periods each week. The sampling process was designed to collect MITC and 1,3-D on TD tubes and chloropicrin on XAD-4 tubes. Samples were collected by passing a measured volume of ambient air through the sorbent tubes mounted on sampling trees. The inlet of each sampling tree was approximately 2 meters above the ground.

Samples were collected in the same sequence for each 24-hour sampling period (Mecca Fire Station, Torres Martinez air monitoring site, and Thermal Fire Station).

Field staff was on site to set up each daily sample. The procedure required a new sorbent tube to be opened on both ends and attached to the sampler. Prior to the start of each 24-hour sample, a flow check and flow adjustments were completed. To perform a flow check, the opened sorbent tube was installed, the pump turned on, and the inlet end of the sorbent tube was connected to a digital mass flow meter. If the flow rate was not within the 10% of the setpoint (between 22.5 and 27.5 sccm for the TD tubes and between 90 and 110 sccm for the XAD tubes), it was corrected to the appropriate setpoint by adjusting the inline rotameter. The flow rate was accurately measured by an Alicat Whisper digital mass flow meter with a range of either 0-200 sccm or 0-500 sccm⁶. If any of the checks failed, the problems were remedied before sampling commenced. After successful completion of the flow checks, the sampler was left on to sample. The flow rate was rechecked at the end of the 24-hour sampling period prior to stopping the pump and removing the sorbent tube. For the samples to be valid, the ending flow rate must have been between 20% of the starting flow, and the elapsed time meter (ETM) must have indicated a run time of between 23.0 and 25.0 hours. Samples out of the specified flow or time ranges were invalidated.⁷ The certification document for the mass flow meters can be seen in Attachment B.

At the end of each 24-hour sampling period, the pertinent sampling information was recorded, and the sampled sorbent tubes were placed in individual capped culture tubes with an identification label affixed to each sample. Each culture tube was immediately placed in a cooler with dry ice and stored in a frozen state for the remainder of the week. At the end of the week, the collected samples were transported back to CARB MLD's Northern Laboratory Branch (NLB) and stored in a laboratory freezer until analysis.

The QC samples were collected at the Mecca Fire Station site on an identical secondary sampler following the same procedures. The spiked sorbent tubes for the field spikes were prepared within one week of the scheduled sampling date and stored in the laboratory freezer until either Sacramento field staff picked them up for transport or they were shipped to CARB's Riverside Headquarters for local field staff. The spikes were transported in a frozen state except when the field spikes were used for sampling. The trip spikes remained frozen for the duration of the week.

The completed field logs which contain the sample start and end times, start and end flow rates, and elapsed time meter readings for each sample can be found in Attachment C. Site nomenclature for this study was based upon the location of each sampler and the daily sample number. Additional abbreviations were appended to the QC samples to identify the type of QC sample collected (collocated, blank, or field spike).

⁶ The digital mass flow meter used varied depending on the scheduled field staff (Sacramento team or Riverside team)

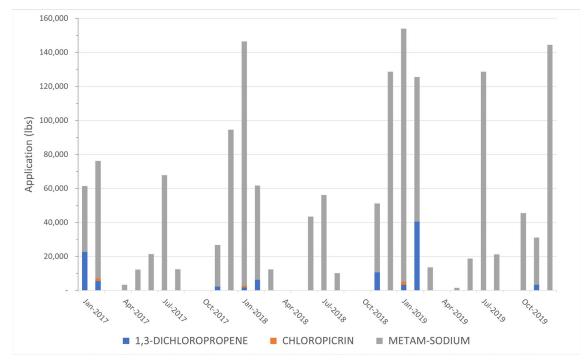
⁷ Some samples with 22.9-hour ETM values were validated and flagged. See Section 5 for more information

Sampler Locations	Quality Control Codes
MFS – Mecca Fire Station (primary and QC)	FB – Field blank
TM – Torres Martinez Desert Cahuilla Indians air monitoring station	FS – Field Spike
TFS – Thermal Fire Station	CO – Collocated

TFS (XAD) - 11/28/22 - 01	=	XAD/chloropicrin primary sample #01 at the Thermal Fire Station for November 28, 2022
MFS (TD) - 1/17/23 - 29 (FS)	=	thermal desorption/MITC/1,3-D field spike sample #29 at the Mecca Fire Station for January 17, 2023

The sampling protocol used during the study can be found in Attachment D.

The NLB extracted and analyzed all samples from this study. The collected sorbent tube samples were analyzed following the laboratory standard operating procedures titled "Standard Operating Procedure for the Analysis of Trichloronitromethane (Chloropicrin) In Ambient Air Using Gas Chromatography/Mass Spectrometry MLD075" and "Standard Operating Procedure for Analysis of Volatile Pesticide Compounds in Ambient Air Using Gas Chromatography/Mass Spectrometer MLD075" and "Standard Operating Procedure for Analysis of Volatile Pesticide Compounds in Ambient Air Using Gas Chromatography/Mass Spectrometer MLD080" (See Attachment E). Following the MLD075 procedure, the XAD-4 tubes were extracted with four milliliters of pesticide grade ethyl acetate. The samples were analyzed by a GC/MS with a split/splitless inlet in the selected ion monitoring mode. Alternatively, a GC/MS/MS with a programmable temperature vaporizing inlet in the selected reaction monitoring mode may have been used. In the MLD080 procedure, TD tubes are capped, with specific autosampler caps, and placed into the thermal desorption system. The compounds are released by heating the tube in a back-flush flow of inert carrier gas followed by secondary trapping on the electrically cooled focusing trap within the system. The trapped compounds are then released by heating and back-flushing the sorbent trap onto the gas chromatography column where they are separated and subsequently identified and quantified by the mass spectrometer in the selection ion monitoring mode.


Sampling Schedule

Sampling was conducted during the high-use time periods for each of the targeted compounds. The high-use seasons for metam sodium are winter and summer, winter for chloropicrin, and winter and fall for 1,3-D based on the latest available pesticide use data (2017-2019). Information on the reported monthly application of each of the prioritized compounds is included in Table 2. Figure 3 presents the data in a graphical format.

Month-Year	1,3-Dichloropropene	Chloropicrin	Metam-Sodium
Jan-2017	22,735.44	-	38,713.58
Feb-2017	5,631.50	1,606.23	68,960.55
Mar-2017	-	-	-
Apr-2017	-	-	3,395.07
May-2017	-	-	12,361.25
Jun-2017	-	-	21,428.15
Jul-2017	-	-	67,746.61
Aug-2017	-	-	12,488.25
Sep-2017	-	-	-
Oct-2017	-	-	-
Nov-2017	2,358.17	-	24,448.19
Dec-2017	-	-	94,560.20
Jan-2018	1,872.17	1,025.38	143,554.37
Feb-2018	6,353.96	-	55,339.30
Mar-2018	-	-	12,399.57
Apr-2018	-	-	-
May-2018	-	-	-
Jun-2018	-	-	43,453.02
Jul-2018	-	-	56,088.43
Aug-2018	-	-	10,202.27
Sep-2018	-	-	-
Oct-2018	-	-	-
Nov-2018	10,761.49	-	40,418.59
Dec-2018	-	-	128,645.39
Jan-2019	3,431.18	1,879.25	148,579.81
Feb-2019	40,580.81	-	84,901.11
Mar-2019	-	-	13,630.91
Apr-2019	-	-	-
May-2019	-	-	1,587.49
Jun-2019	-	-	18,761.33
Jul-2019	-	-	128,619.60
Aug-2019	-	-	21,291.84
Sep-2019	-	-	-
Oct-2019	-	-	45,508.04
Nov-2019	3,432.45	-	27,734.59
Dec-2019	-	-	144,455.30
Total	97,157.15	4,510.86	1,469,272.82

TABLE 2 - ECV MONTHLY PESTICIDE USE IN POUNDS (2017-2019)

FIGURE 3 - ECV MONTHLY PESTICIDE USE CHART (2017-2019)

The monitoring schedule was kept confidential to ensure various pesticide application frequency/timeframes were not affected and samples were representative of community exposure levels.

4. Deviations from Protocol

There were only four deviations from the protocol: the ETM readings were incorrectly written on the log sheets for 12/23/22; the starting ETM was not listed in the log sheet for 01/06/23; the ETMs were inadvertently switched on 01/09/23; and the sampling end date on 1/11/2023 was incorrectly listed in the field log sheets. The information was corrected in the included tables.

After the first week of sampling, additional pumps were added to the Mecca site to ensure sample flow was maintained; both the primary and QC sampler were set up with one pump per sampling line for a total of four pumps. The PVC probe cover fell off during runs on 12/15/2022 and 2/14/2023. On 12/20/22, the pump was turned on during a field blank run, however, the field blank sample was redone that same week. The XAD in-line rotameter was replaced at the Thermal Fire Station site on 12/30/22 due to issues with flow stability.

5. Results

Many of the samples had concentrations that were below the laboratory reporting limits listed below:

Pesticide	Reporting Limit		
Pesticide	(µg/sample)	(µg/m³)	
MITC	0.001	0.03	
1,3-D	0.0089	0.25	
Chloropicrin	0.008	0.06	

TABLE 3 - PESTICIDE REPORTING LIMITS

MITC Results

Of the 141 valid primary samples, 70 had MITC concentrations above the reporting limit. MITC concentrations ranged from 0.03 to 2.19 μ g/m³. The three samples with the highest concentrations were from the Torres Martinez air monitoring site on 12/15/22 (2.19 μ g/m³), 12/20/22 (1.62 μ g/m³), and 2/13/23 (1.71 μ g/m³). The results are summarized below:

Site	Number of Samples Collected	Invalid	Below the Reporting Limit	At or Above the Reporting Limit
Mecca Fire Station	52	3	19	30
Torres Martinez air monitoring site	52	6	22	24
Thermal Fire Station	52	6	30	16
Total	156	15	71	70

TABLE 4 - MITC RESULTS

1,3-D Results

Of the 141 valid 1,3-D primary samples collected, none of the concentrations were above the reporting limit⁸. The results are summarized below:

Site	Number of Samples Collected	Invalid	Below the Reporting Limit	At or Above the Reporting Limit
Mecca Fire Station	52	3	49	0
Torres Martinez air monitoring site	52	6	46	0
Thermal Fire Station	52	6	46	0
Total	156	15	141	0

Chloropicrin Results

Of the 139 valid chloropicrin primary samples collected, two of the concentrations were above the reporting limit. Both samples were collected at the Thermal Fire Station on 1/20/23 (0.17 µg/m³) and 2/9/23 (0.39 µg/m³). The results are summarized below:

TABLE 6 - CHLOROPICRIN RESULTS

Site	Number of Samples Collected	Invalid	Below the Reporting Limit	At or Above the Reporting Limit
Mecca Fire Station	52	3	49	0
Torres Martinez air monitoring site	52	4	48	0
Thermal Fire Station	52	10	40	2
Total	156	17	137	2

Full results separated by location are included in Tables 7 through 9.

Data Completeness:

Over the course of the 13-week monitoring period, a total of 468 primary samples were collected. 47 samples were invalid and 421 were valid for a total of 90% sample validity. Figures 4-6 summarize the results of the valid primary samples per site.

⁸ 1,3-dichloropropene is analyzed by measuring the concentration of both its cis- and trans- isomers and then combining the results to obtain a complete 1,3-dichloropropene concentration. In this report, one analysis refers to the combination of the two individual cis- and trans- isomer concentration measurements for a particular air sample.

FIGURE 4 - MECCA FIRE STATION VALID SAMPLES

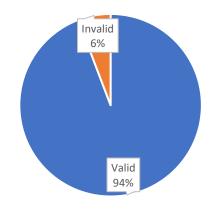


FIGURE 5 - TORRES MARTINEZ AIR MONITORING SITE VALID SAMPLES

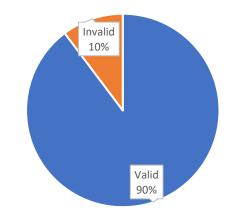
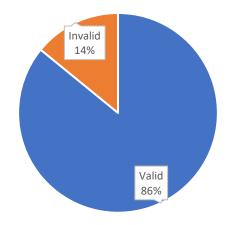



FIGURE 6 - THERMAL FIRE STATION VALID SAMPLES

Invalidation and Flagging

Primary samples were invalidated for the following reasons:

- 1. Flow rate out of specifications: the ending flow rate was not within the 20% of the target flow rate.
- 2. Run time out of specifications: the sample did not run for between 23.0 and 25.0 hours as indicated by the ETM⁹.
- 3. Field issues: Unforeseen circumstances can arise during a field study; such situations included field equipment falling over during high wind events, pump failure, a sorbent tube breaking during sample removal, and a sample missing during transport to NLB.

There were 47 invalidated samples during the study:

- Mecca Fire Station
 - MFS (XAD) 02, MFS (XAD and TD) 03, MFS (XAD) 21, MFS (TD) 28, MFS (TD) 49
- Torres Martinez air monitoring site
 - TM (TD) 02, TM (XAD) 07, TM (TD) 20, TM (XAD & TD) 28, TM (XAD & TD) 49, TM (XAD & TD) 50, TM (TD) 52
- Thermal Fire Station
 - TFS (XAD) 02, TFS (XAD) 03, TFS (XAD & TD) 09, TFS (XAD) 11, TFS (XAD) 14, TFS (XAD) 16, TFS (XAD) 17, TFS (XAD) 18, TFS (XAD) 20, TFS (XAD) 27, TFS (TD) 41, TFS (TD) 46, TFS (TD) 47, TFS (TD) 49, TFS (TD) 50

Four samples were flagged for low sampling times. These samples were collected after 23.0 hours as indicated by the field logs. However, because the ETM only shows six-minute increments, the ETM did not display 23.0 hours and displayed 22.9 hours instead.

- Torres Martinez air monitoring site
 - TM (XAD & TD) 42
- Thermal Fire Station
 - TFS (XAD & TD) 51

⁹ Some samples with 22.9-hour ETM values were validated and flagged.

TABLE 7 - MECCA RESULTS

None of the valid 1,3-D samples were detected above the reporting limit of 0.0089 μ g/sample or 0.25 μ g/m³. 30 of the 49 valid MITC samples were above the reporting limit of 0.001 μ g/sample or 0.03 μ g/m³. Concentrations ranged from below the reporting limit (<RL) to 1.56 μ g/m³ with an average concentration of 0.18 μ g/m³.¹⁰ None of the 49 valid chloropicrin samples were above the reporting limit of 0.008 μ g/sample or 0.06 μ g/m³.

Lag		Volume	1,3-D Conce	ntration	MITC Conce	ntration	Volume	Chloropicrin Concentration	
Log #	Sample Start	(m ³)	(µg/sample)	(µg/m³)	(µg/sample)	(µg/m³)	(m ³)	(µg/sam ple)	(µg/m³)
1	11/28/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
2	11/29/2022	0.04	<rl< td=""><td><rl< td=""><td>0.0023</td><td>0.06</td><td></td><td colspan="2">Invalid: Flow rate out of specificat</td></rl<></td></rl<>	<rl< td=""><td>0.0023</td><td>0.06</td><td></td><td colspan="2">Invalid: Flow rate out of specificat</td></rl<>	0.0023	0.06		Invalid: Flow rate out of specificat	
3	11/30/2022		Invalid: Flow	rate out of s	pecifications	_	Invalid: Fl	ow rate out	of specifications
4	12/1/2022	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
5	12/6/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
6	12/7/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
7	12/8/2022	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
8	12/9/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
9	12/14/2022	0.03	<rl< td=""><td><rl< td=""><td>0.054</td><td>1.56</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.054</td><td>1.56</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.054	1.56	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
10	12/15/2022	0.04	<rl< td=""><td><rl< td=""><td>0.0074</td><td>0.21</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0074</td><td>0.21</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0074	0.21	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
11	12/16/2022	0.03	<rl< td=""><td><rl< td=""><td>0.0073</td><td>0.22</td><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0073</td><td>0.22</td><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0073	0.22	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
12	12/17/2022	0.04	<rl< td=""><td><rl< td=""><td>0.0085</td><td>0.24</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0085</td><td>0.24</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0085	0.24	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
13	12/20/2022	0.04	<rl< td=""><td><rl< td=""><td>0.0018</td><td>0.05</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0018</td><td>0.05</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0018	0.05	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
14	12/21/2022	0.04	<rl< td=""><td><rl< td=""><td>0.0031</td><td>0.09</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0031</td><td>0.09</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0031	0.09	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
15	12/22/2022	0.03	<rl< td=""><td><rl< td=""><td>0.0019</td><td>0.06</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0019</td><td>0.06</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0019	0.06	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
16	12/23/2022	0.03	<rl< td=""><td><rl< td=""><td>0.001</td><td>0.03</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.001</td><td>0.03</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.001	0.03	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
17	12/27/2022	0.03	<rl< td=""><td><rl< td=""><td>0.016</td><td>0.46</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.016</td><td>0.46</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.016	0.46	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
18	12/28/2022	0.04	<rl< td=""><td><rl< td=""><td>0.014</td><td>0.38</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.014</td><td>0.38</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.014	0.38	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
19	12/29/2022	0.04	<rl< td=""><td><rl< td=""><td>0.013</td><td>0.36</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.013</td><td>0.36</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.013	0.36	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
20	12/30/2022	0.03	<rl< td=""><td><rl< td=""><td>0.0089</td><td>0.26</td><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0089</td><td>0.26</td><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0089	0.26	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
21	1/3/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0013</td><td>0.04</td><td></td><td></td><td>of specifications</td></rl<></td></rl<>	<rl< td=""><td>0.0013</td><td>0.04</td><td></td><td></td><td>of specifications</td></rl<>	0.0013	0.04			of specifications
22	1/4/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0046</td><td>0.13</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0046</td><td>0.13</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0046	0.13	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
23	1/5/2023	0.04	<rl< td=""><td><rl< td=""><td>0.012</td><td>0.34</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.012</td><td>0.34</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.012	0.34	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
24	1/6/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
25	1/9/2023	0.03	<rl< td=""><td><rl< td=""><td>0.0097</td><td>0.28</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0097</td><td>0.28</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0097	0.28	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
26	1/10/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
27	1/11/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
28	1/12/2023	0.04		alid: Sample		- 10	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
29	1/17/2023	0.04	<rl <rl< td=""><td><rl <rl< td=""><td><rl 0.0034</rl </td><td><rl< td=""><td>0.15 0.14</td><td><rl <rl< td=""><td><rl< td=""></rl<></td></rl<></rl </td></rl<></td></rl<></rl </td></rl<></rl 	<rl <rl< td=""><td><rl 0.0034</rl </td><td><rl< td=""><td>0.15 0.14</td><td><rl <rl< td=""><td><rl< td=""></rl<></td></rl<></rl </td></rl<></td></rl<></rl 	<rl 0.0034</rl 	<rl< td=""><td>0.15 0.14</td><td><rl <rl< td=""><td><rl< td=""></rl<></td></rl<></rl </td></rl<>	0.15 0.14	<rl <rl< td=""><td><rl< td=""></rl<></td></rl<></rl 	<rl< td=""></rl<>
30 31	1/18/2023 1/19/2023	0.03	<rl <rl< td=""><td><rl <rl< td=""><td>0.0034</td><td>0.10 0.29</td><td>0.14</td><td><rl <rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl </td></rl<></rl </td></rl<></rl 	<rl <rl< td=""><td>0.0034</td><td>0.10 0.29</td><td>0.14</td><td><rl <rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl </td></rl<></rl 	0.0034	0.10 0.29	0.14	<rl <rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl 	<rl <rl< td=""></rl<></rl
32		0.03	<rl< td=""><td><rl< td=""><td>0.001</td><td>0.29</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.001</td><td>0.29</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.001	0.29	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
32	1/20/2023 1/26/2023	0.04	<rl><rl< td=""><td><rl <rl< td=""><td>0.001 <rl< td=""><td>0.03 <rl< td=""><td>0.14</td><td><rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl></td></rl<></td></rl<></td></rl<></rl </td></rl<></rl>	<rl <rl< td=""><td>0.001 <rl< td=""><td>0.03 <rl< td=""><td>0.14</td><td><rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl></td></rl<></td></rl<></td></rl<></rl 	0.001 <rl< td=""><td>0.03 <rl< td=""><td>0.14</td><td><rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl></td></rl<></td></rl<>	0.03 <rl< td=""><td>0.14</td><td><rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl></td></rl<>	0.14	<rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl>	<rl <rl< td=""></rl<></rl
33	1/26/2023	0.04	<rl><rl< td=""><td><rl <rl< td=""><td>0.0033</td><td><rl 0.10</rl </td><td>0.14</td><td><rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl></td></rl<></rl </td></rl<></rl>	<rl <rl< td=""><td>0.0033</td><td><rl 0.10</rl </td><td>0.14</td><td><rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl></td></rl<></rl 	0.0033	<rl 0.10</rl 	0.14	<rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl>	<rl <rl< td=""></rl<></rl
34	1/27/2023	0.03	<rl <rl< td=""><td><rl><rl< td=""><td>0.0033</td><td>0.10</td><td>0.13</td><td><rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl></td></rl<></rl></td></rl<></rl 	<rl><rl< td=""><td>0.0033</td><td>0.10</td><td>0.13</td><td><rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl></td></rl<></rl>	0.0033	0.10	0.13	<rl><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></rl>	<rl <rl< td=""></rl<></rl
36	1/28/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></td></rl<>	0.14	<rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<>	<rl <rl< td=""></rl<></rl
37	1/31/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<></td></rl<>	0.14	<rl< td=""><td><rl <rl< td=""></rl<></rl </td></rl<>	<rl <rl< td=""></rl<></rl
38	2/1/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
39	2/2/2023	0.04	<rl< td=""><td><rl< td=""><td><rl <rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></rl </td></rl<></td></rl<>	<rl< td=""><td><rl <rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></rl </td></rl<>	<rl <rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></rl 	<rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
40	2/3/2023	0.04	<rl< td=""><td><rl< td=""><td>0.041</td><td>1.17</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.041</td><td>1.17</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.041	1.17	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
40	2/6/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
42	2/7/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
43	2/8/2023	0.04	<rl< td=""><td><rl< td=""><td>0.026</td><td>0.75</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.026</td><td>0.75</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.026	0.75	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
44	2/9/2023	0.04	<rl< td=""><td><rl< td=""><td>0.004</td><td>0.11</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.004</td><td>0.11</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.004	0.11	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>

 $^{^{10}}$ Averages were calculated treating <RL as % the reporting limit.

Log		Volume	1,3-D Concentration		MITC Conce	ntration	Volume	Chloropicr	Chloropicrin Concentration	
Log #	Sample Start	(m ³)	(µg/sample)	(µg/m³)	(µg/sample)	(µg/m³)	(m ³)	(µg/sam ple)	(µg/m³)	
45	2/13/2023	0.04	<rl< td=""><td><rl< td=""><td>0.007</td><td>0.19</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.007</td><td>0.19</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.007	0.19	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
46	2/14/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0011</td><td>0.03</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0011</td><td>0.03</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0011	0.03	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
47	2/15/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
48	2/16/2023	0.04	<rl< td=""><td><rl< td=""><td>0.017</td><td>0.45</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.017</td><td>0.45</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.017	0.45	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
49	2/21/2023		Invalid: Flow	rate out of s	pecifications		0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
50	2/22/2023	0.03	<rl< td=""><td><rl< td=""><td>0.0029</td><td>0.09</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0029</td><td>0.09</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0029	0.09	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
51	2/23/2023	0.04	<rl< td=""><td><rl< td=""><td>0.008</td><td>0.22</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.008</td><td>0.22</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.008	0.22	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
52	2/24/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	

TABLE 7 - MECCA RESULTS (CONTINUED)

TABLE 8 - TORRES MARTINEZ AIR MONITORING SITE RESULTS

None of the valid 1,3-D samples were detected above the reporting limit of 0.0089 μ g/sample or 0.25 μ g/m³. 24 of the 46 valid MITC samples were above the reporting limit of 0.001 μ g/sample or 0.03 μ g/m³. Concentrations ranged from below the reporting limit (<RL) to 2.19 μ g/m³ with an average concentration of 0.27 μ g/m³. None of the 48 valid chloropicrin samples were above the reporting limit of 0.008 μ g/sample or 0.06 μ g/m³.

Log	Sample	Volume	1,3-D Conce	ntration	MITC Conce	ntration	Volume	Chloropicrin	Concentration	
#	Start	(m³)	(µg/sample)	(µg/m³)	(µg/sample)	(µg/m³)	(m³)	(µg/sample)	(µg/m³)	
1	11/28/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
2	11/29/2022		Invalid: Flow	rate out of	specifications		0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
3	11/30/2022	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
4	12/1/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
5	12/6/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
6	12/7/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
7	12/8/2022	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>Invalio</td><td>d: Flow rate out of</td><td>specifications</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>Invalio</td><td>d: Flow rate out of</td><td>specifications</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>Invalio</td><td>d: Flow rate out of</td><td>specifications</td></rl<></td></rl<>	<rl< td=""><td>Invalio</td><td>d: Flow rate out of</td><td>specifications</td></rl<>	Invalio	d: Flow rate out of	specifications	
8	12/9/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
9	12/14/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
10	12/15/2022	0.03	<rl< td=""><td><rl< td=""><td>0.075</td><td>2.1937</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.075</td><td>2.1937</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.075	2.1937	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
11	12/16/2022	0.03	<rl< td=""><td><rl< td=""><td>0.027</td><td>0.7827</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.027</td><td>0.7827</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.027	0.7827	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
12	12/17/2022	0.04	<rl< td=""><td><rl< td=""><td>0.033</td><td>0.8898</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.033</td><td>0.8898</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.033	0.8898	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
13	12/20/2022	0.04	<rl< td=""><td><rl< td=""><td>0.059</td><td>1.6202</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.059</td><td>1.6202</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.059	1.6202	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
14	12/21/2022	0.04	<rl< td=""><td><rl< td=""><td>0.013</td><td>0.3654</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.013</td><td>0.3654</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.013	0.3654	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
15	12/22/2022	0.04	<rl< td=""><td><rl< td=""><td>0.024</td><td>0.6380</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.024</td><td>0.6380</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.024	0.6380	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
16	12/23/2022	0.03	<rl< td=""><td><rl< td=""><td>0.01</td><td>0.2906</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.01</td><td>0.2906</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.01	0.2906	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
17	12/27/2022	0.04	<rl< td=""><td><rl< td=""><td>0.0062</td><td>0.1683</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0062</td><td>0.1683</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0062	0.1683	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
18	12/28/2022	0.03	<rl< td=""><td><rl< td=""><td>0.029</td><td>0.8426</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.029</td><td>0.8426</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.029	0.8426	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
19	12/29/2022	0.03	<rl< td=""><td><rl< td=""><td>0.035</td><td>1.0248</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.035</td><td>1.0248</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.035	1.0248	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
20	12/30/2022		Invalid: Flow	rate out of	specifications		0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
21	1/3/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0012</td><td>0.0316</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0012</td><td>0.0316</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0012	0.0316	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
22	1/4/2023	0.03	<rl< td=""><td><rl< td=""><td>0.0056</td><td>0.1621</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0056</td><td>0.1621</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0056	0.1621	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
23	1/5/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0026</td><td>0.0725</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0026</td><td>0.0725</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0026	0.0725	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
24	1/6/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
25	1/9/2023	0.00	<rl< td=""><td><rl< td=""><td>0.0028</td><td>0.0757</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0028</td><td>0.0757</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0028	0.0757	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
26	1/10/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0016</td><td>0.0432</td><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0016</td><td>0.0432</td><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0016	0.0432	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
27	1/11/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
28	1/12/2023		Invalid: Flow rate out of specifications							
29	1/17/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	
30	1/18/2023	0.03	<rl< td=""><td><rl< td=""><td>0.0037</td><td>0.1055</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0037</td><td>0.1055</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0037	0.1055	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>	

Log	Sample Start	volume (m ²)	1,3-D Conce	entration	MITC Conce	ntration	Volume	Chloropicrin Concentration	
#	Start		(µg/sample)	(µg/m³)	(µg/sample)	(µg/m³)	(m³)	(µg/sample)	(µg/m³)
31	1/19/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
32	1/20/2023	0.04	<rl< td=""><td><rl< td=""><td>0.012</td><td>0.3424</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.012</td><td>0.3424</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.012	0.3424	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
33	1/26/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
34	1/27/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
35	1/28/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
36	1/29/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0019</td><td>0.0530</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0019</td><td>0.0530</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0019	0.0530	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
37	1/31/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
38	2/1/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
39	2/2/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
40	2/3/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
41	2/6/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
42*	2/7/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
43	2/8/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
44	2/9/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0051</td><td>0.1448</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0051</td><td>0.1448</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0051	0.1448	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
45	2/13/2023	0.04	<rl< td=""><td><rl< td=""><td>0.061</td><td>1.7149</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.061</td><td>1.7149</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.061	1.7149	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
46	2/14/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0071</td><td>0.1881</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0071</td><td>0.1881</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0071	0.1881	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
47	2/15/2023	0.03	<rl< td=""><td><rl< td=""><td>0.0027</td><td>0.0774</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0027</td><td>0.0774</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0027	0.0774	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
48	2/16/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0028</td><td>0.0728</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0028</td><td>0.0728</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0028	0.0728	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
49	2/21/2023			Invalid:	Run time out of	f specificati	ons		
50	2/22/2023			Invalid:	Run time out of	f specificati	ons		
51	2/23/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0017</td><td>0.0440</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0017</td><td>0.0440</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0017	0.0440	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
52	2/24/2023		nvalid: Flow rate	e out of spec	ifications		0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>

TABLE 8 - TORRES MARTINEZ AIR MONITORING SITE RESULTS (CONTINUED)

*Samples highlighted in yellow have been flagged for having a sampling time <23.0-hours

None of the valid 1,3-D samples were detected above the reporting limit of 0.0089 μ g/sample or 0.25 μ g/m³. 16 of the 46 valid MITC samples were above the reporting limit of 0.001 μ g/sample or 0.03 μ g/m³. Concentrations ranged from below the reporting limit (<RL) to 0.57 μ g/m³ with an average concentration of 0.06 μ g/m³. Two of the 42 valid chloropicrin samples were above the reporting limit of 0.008 μ g/sample or 0.06 μ g/m³. Concentrations ranged from below the reporting limit to 0.39 μ g/m³ with an average concentration of 0.04 μ g/m³.

Log	Sample	Volume	1,3-D Conce	ntration	MITC Conce	ntration	\/aluma (m3)	Chloropicrir	Concentration
#	Start	(m³)	(µg/sample)	(µg/m³)	(µg/sample)	(µg/m³)	Volume (m ³)	(µg/sample)	(µg/m³)
1	11/28/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
2	11/29/2022	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<>	<rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<>	Invalid: Flo	ow rate out of sp	ecifications
3	11/30/2022	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<>	<rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<>	Invalid: Flo	ow rate out of sp	ecifications
4	12/1/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
5	12/6/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
6	12/7/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
7	12/8/2022	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
8	12/9/2022	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
9	12/14/2022				Invalid: Flow	rate out of	fspecifications		
10	12/15/2022	0.03	<rl< td=""><td><rl< td=""><td>0.001</td><td>0.0297</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.001</td><td>0.0297</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.001	0.0297	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
11	12/16/2022	0.03	<rl< td=""><td><rl< td=""><td>0.0014</td><td>0.0406</td><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<>	<rl< td=""><td>0.0014</td><td>0.0406</td><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<>	0.0014	0.0406	Invalid: Flo	ow rate out of sp	ecifications
12	12/17/2022	0.03	<rl< td=""><td><rl< td=""><td>0.0031</td><td>0.0863</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0031</td><td>0.0863</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0031	0.0863	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
13	12/20/2022	0.04	<rl< td=""><td><rl< td=""><td>0.0011</td><td>0.0308</td><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0011</td><td>0.0308</td><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0011	0.0308	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
14	12/21/2022	0.04	<rl< td=""><td><rl< td=""><td>0.0012</td><td>0.0341</td><td>Invalid: Flo</td><td colspan="2">Invalid: Flow rate out of specifications</td></rl<></td></rl<>	<rl< td=""><td>0.0012</td><td>0.0341</td><td>Invalid: Flo</td><td colspan="2">Invalid: Flow rate out of specifications</td></rl<>	0.0012	0.0341	Invalid: Flo	Invalid: Flow rate out of specifications	
15	12/22/2022	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
16	12/23/2022	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<>	<rl< td=""><td>Invalid: Flo</td><td>ow rate out of sp</td><td>ecifications</td></rl<>	Invalid: Flo	ow rate out of sp	ecifications

Log	Sample	Volume	1,3-D Conce	ntration	MITC Conce	ntration	Volume (m ³)	Chloropicrin	Concentration
#	Start	(m³)	(µg/sample)	(µg/m³)	(µg/sample)	(µg/m³)	Volume (m ³)	(µg/sample)	(µg/m³)
17	12/27/2022	0.03	<rl< td=""><td><rl< td=""><td>0.0056</td><td>0.1568</td><td colspan="2">Invalid: Flow rate out of specification</td><td>ecifications</td></rl<></td></rl<>	<rl< td=""><td>0.0056</td><td>0.1568</td><td colspan="2">Invalid: Flow rate out of specification</td><td>ecifications</td></rl<>	0.0056	0.1568	Invalid: Flow rate out of specification		ecifications
18	12/28/2022	0.04	<rl< td=""><td><rl< td=""><td>0.0067</td><td>0.1854</td><td>Invalid: Fl</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<>	<rl< td=""><td>0.0067</td><td>0.1854</td><td>Invalid: Fl</td><td>ow rate out of sp</td><td>ecifications</td></rl<>	0.0067	0.1854	Invalid: Fl	ow rate out of sp	ecifications
19	12/29/2022	0.03	<rl< td=""><td><rl< td=""><td>0.0085</td><td>0.2326</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0085</td><td>0.2326</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0085	0.2326	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
20	12/30/2022	0.03	<rl< td=""><td><rl< td=""><td>0.0088</td><td>0.2564</td><td>Invalid: Fl</td><td>ow rate out of sp</td><td>ecifications</td></rl<></td></rl<>	<rl< td=""><td>0.0088</td><td>0.2564</td><td>Invalid: Fl</td><td>ow rate out of sp</td><td>ecifications</td></rl<>	0.0088	0.2564	Invalid: Fl	ow rate out of sp	ecifications
21	1/3/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
22	1/4/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0029</td><td>0.0817</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0029</td><td>0.0817</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0029	0.0817	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
23	1/5/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
24	1/6/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
25	1/9/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0021</td><td>0.0617</td><td>0.16</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0021</td><td>0.0617</td><td>0.16</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0021	0.0617	0.16	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
26	1/10/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
27	1/11/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>Invalid: Samp</td><td>le tube broke off</td><td>during removal</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>Invalid: Samp</td><td>le tube broke off</td><td>during removal</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>Invalid: Samp</td><td>le tube broke off</td><td>during removal</td></rl<></td></rl<>	<rl< td=""><td>Invalid: Samp</td><td>le tube broke off</td><td>during removal</td></rl<>	Invalid: Samp	le tube broke off	during removal
28	1/12/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
29	1/17/2023	0.02	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.16</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.16</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.16</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.16</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.16	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
30	1/18/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0019</td><td>0.0540</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0019</td><td>0.0540</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0019	0.0540	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
31	1/19/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
32	1/20/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td>0.024</td><td>0.1675</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td>0.024</td><td>0.1675</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td>0.024</td><td>0.1675</td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td>0.024</td><td>0.1675</td></rl<>	0.14	0.024	0.1675
33	1/26/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
34	1/27/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
35	1/28/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
36	1/29/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
37	1/31/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
38	2/1/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
39	2/2/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
40	2/3/2023	0.03	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.13	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
41	2/6/2023		Invalid: Flow	rate out of	specifications		0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
42	2/7/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
43	2/8/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0017</td><td>0.0450</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0017</td><td>0.0450</td><td>0.14</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0017	0.0450	0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
44	2/9/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td>0.056</td><td>0.3886</td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.14</td><td>0.056</td><td>0.3886</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.14</td><td>0.056</td><td>0.3886</td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td>0.056</td><td>0.3886</td></rl<>	0.14	0.056	0.3886
45	2/13/2023	0.04	<rl< td=""><td><rl< td=""><td>0.0053</td><td>0.1454</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.0053</td><td>0.1454</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.0053	0.1454	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
46	2/14/2023		Invalid: Flow	rate out of	specifications		0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
47	2/15/2023		Invalid: Flow		•		0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
48	2/16/2023	0.04	<rl< td=""><td><rl< td=""><td>0.021</td><td>0.5682</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.021</td><td>0.5682</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.021	0.5682	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
49	2/21/2023		Invalid: Flow	rate out of	specifications		0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
50	2/22/2023				specifications		0.14	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
51*	2/23/2023	0.04	<rl< td=""><td><rl< td=""><td>0.017</td><td>0.4631</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.017</td><td>0.4631</td><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.017	0.4631	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
52	2/24/2023	0.04	<rl< td=""><td><rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>

TABLE 9 - THERMAL FIRE STATION RESULTS (CONTINUED)

* Samples highlighted in yellow have been flagged for having a sampling time <23.0-hours

6. Quality Control Results

Quality control samples were collected at the Mecca Fire Station site. Field QC samples consisted of 13 collocated samples, 13 field spikes, and 13 field blanks. The QC results are good and comparable to other pesticides studies conducted by CARB MLD.

Collocated Samples

There was one collocation each week, resulting in 13 collocated samples. Some of the values were not quantifiable due to an invalid collocated or primary sample. Samples were invalidated due to the flow rate being out of specifications. Some values were not quantifiable because the concentration values were below the laboratory reporting limit.

The relative percent difference (RPD) of the collocated samples for MITC ranged from 0.26% to 12.54%, meaning variability between the collocated and primary sample concentration was minimal. The primary and collocated samples for 1,3-D and chloropicrin were all below the reporting limit so the RPD could not be calculated.

The formula for calculating the RPD values is as follows:

$$RPD = \frac{2(Collocated \,\mu g/m^3 - Sample \,\mu g/m^3)}{Collocated \,\mu g/m^3 + Sample \,\mu g/m^3} \, x \, 100$$

Due to rounding of results, calculated values may not match values presented in the tables.

Comula Nomo) (aluma (m. 3)	Prima	ry) (aluma a (m 3)	Colloca	ted	Deletive Demonst Difference
Sample Name	Volume (m ³)	(µg/sample)	(µg/m³)	Volume (m ³)	(µg/sample)	(µg/m³)	Relative Percent Difference
MFS-03		Invalid		0.04	0.0014	0.0361	
MFS-05	0.03	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-09	0.03	0.054	1.5602	0.03	0.053	1.5562	0.26%
MFS-15	0.03	0.0019	0.0552	0.03	0.0018	0.0538	2.48%
MFS-19	0.04	0.013	0.3636	0.03	0.014	0.4122	12.54%
MFS-23	0.04	0.012	0.3353		Invalid		
MFS-26	0.03	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-30	0.03	0.0034	0.0998	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-35	0.04	0.0054	0.1507	0.04	0.0061	0.1706	12.37%
MFS-37	0.04	<rl< td=""><td><rl< td=""><td>0.04</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.04</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.04	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-42	0.04	<rl< td=""><td><rl< td=""><td></td><td colspan="2">Invalid</td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td colspan="2">Invalid</td><td></td></rl<>		Invalid		
MFS-47	0.03	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-50	0.03	0.0029	0.0874	0.03	0.0029	0.0836	4.48%

TABLE 10 - COLLOCATED MITC RELATIVE PERCENT DIFFERENCE

Commis Norma) (aluma (m. 3)	Prima	ry) (alivera (m. 3)	Collocated		Deletive Demonst Difference
Sample Name	Volume (m ³)	(µg/sample)	(µg/m³)	Volume (m ³) (µg/sample) (µg/m ³) Relativ		Relative Percent Difference	
MFS-03		Invalid		0.04	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-05	0.03	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-09	0.03	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-15	0.03	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-19	0.04	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-23	0.04	<rl< td=""><td><rl< td=""><td></td><td>Invalid</td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td>Invalid</td><td></td><td></td></rl<>		Invalid		
MFS-26	0.03	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-30	0.03	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-35	0.04	<rl< td=""><td><rl< td=""><td>0.04</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.04</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.04	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-37	0.03	<rl< td=""><td><rl< td=""><td>0.04</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.04</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.04	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-42	0.04	<rl< td=""><td><rl< td=""><td></td><td>Invalid</td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td>Invalid</td><td></td><td></td></rl<>		Invalid		
MFS-47	0.03	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-50	0.03	<rl< td=""><td><rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.03</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.03	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	

TABLE 11 - COLLOCATED 1,3-D RELATIVE PERCENT DIFFERENCE

TABLE 12 - COLLOCATED CHLOROPICRIN RELATIVE PERCENT DIFFERENCE

Sample Name	Volume (m ³)	Primary		Volume (m ³)	Collocated		Relative Percent Difference
Sample Name	volume (m*)	(µg/sample)	(µg/m³)	volume (m*)	(µg/sample)	(µg/m³)	Relative Percent Difference
MFS-03		Invalid			Invalid		
MFS-05	0.14	<rl< td=""><td><rl< td=""><td></td><td>Invalid</td><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td>Invalid</td><td></td><td></td></rl<>		Invalid		
MFS-09	0.14	<rl< td=""><td><rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.13</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.13	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-15	0.14	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-19	0.14	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-23	0.14	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-26	0.14	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-30	0.14	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-35	0.14	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-37	0.14	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-42	0.14	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-47	0.13	<rl< td=""><td><rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.14</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.14	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
MFS-50	0.14	<rl< td=""><td><rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<></td></rl<>	<rl< td=""><td>0.15</td><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	0.15	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	

Field Spikes

Field spike percent recovery values for each pesticide are shown in the following tables. When viewing the tables, please reference the following equation:

$$Spike \ recovery \ percent = \frac{(Spike \ result - \ Primary \ Result)}{Spike \ Amount} \times 100$$

Field spike recovery was good overall which indicates that sampling media interferences were not present. Quantifiable field spike recovery ranged from 64% to 153%. The spike recovery criteria is 70-130%; only three of the results fell outside the criteria. Some of the values were not quantifiable due to an invalid field spike or primary sample. Samples were invalidated due to the flow rate being out of specifications.

Sample Name	Analyte	Spike Amount (ng/sample)	Spike Result (ng/sample)	Primary Sample Result (ng/sample)	Percent Recovery
MFS-02	MITC	Inv		2.3	•
	cis-1,3-D	Inv	alid	0	
	trans-1,3-D	Inv	alid	0	
	Chloropicrin		Invalid		
MFS-06	мітс	10	8.6	0	86%
	cis-1,3-D	96.79	86	0	89%
	trans-1,3-D	100.34	93	0	93%
	Chloropicrin	120	95	0	79%
MFS-11	MITC	10	17	7.3	97%
-	cis-1,3-D	96.79	89	0	92%
	trans-1,3-D	100.34	93	0	93%
	Chloropicrin	120	100	0	83%
MFS-14	MITC	10	11	3.1	79%
	cis-1,3-D	96.79	80	0	83%
	trans-1,3-D	100.34	81	0	81%
	Chloropicrin	120	96	0	80%
MFS-17	MITC	10	26	16	100%
10115 17	cis-1,3-D	96.79	82	0	85%
	trans-1,3-D	100.34	86	0	86%
	Chloropicrin	120	98	0	82%
MFS-21	MITC	10	9.9	1.3	86%
1411 5 2 1	cis-1,3-D	96.79	81	0	84%
	trans-1,3-D	100.34	86	0	86
	Chloropicrin	100.34	110	Invalid	80
MFS-25	MITC	120	25	9.7	153%
10153-23		96.79	78		81%
	cis-1,3-D	100.34	82	0	81%
	trans-1,3-D				
N456 20	Chloropicrin	120	100	0	83%
MFS-29	MITC	10	9.2	0	92%
	cis-1,3-D	96.79	82	0	85%
	trans-1,3-D	100.34	85	0	85%
	Chloropicrin	120	83	0	69%
MFS-33	MITC	10	8.9	0	89%
	cis-1,3-D	96.79	84	0	87%
	trans-1,3-D	100.34	87	0	87%
	Chloropicrin	120	100	0	83%
MFS-38	MITC	10	9.1	0	91%
	cis-1,3-D	96.79	89	0	92%
	trans-1,3-D	100.34	91	0	91%
	Chloropicrin	120	77	0	64%
MFS-41	MITC	10	9.4	0	94%
	cis-1,3-D	96.79	83	0	86%
	trans-1,3-D	100.34	88	0	88%
	Chloropicrin	120	87	0	73%
MFS-45	MITC	10	16	7	90%
	cis-1,3-D	96.79	82	0	85%
	trans-1,3-D	100.34	87	0	87%
	Chloropicrin	120	90	0	75%
MFS-49	MITC	Inv	alid		
	cis-1,3-D	Inv	alid		
	trans-1,3-D	Inv	alid		
	Chloropicrin	120	90	0	75%

TABLE 13 - FIELD SPIKE RECOVERY

Field Blanks

Concentrations of all three pesticides were below the reporting limit (<RL) in all 13 field blanks, indicating contamination did not occur from ambient conditions, sampling handling, or other sources. The results are shown in the following table.

Sample Name	Analyte	Field Blank (µg/m³)	Corresponding Primary Sample (µg/m ³)
MFS-01	MITC	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-07	MITC	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-10	MITC	<rl< td=""><td>0.21</td></rl<>	0.21
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-16	MITC	<rl< td=""><td>0.03</td></rl<>	0.03
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-18	MITC	<rl< td=""><td>0.38</td></rl<>	0.38
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-22	MITC	<rl< td=""><td>0.13</td></rl<>	0.13
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-27	MITC	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-31	MITC	<rl< td=""><td>0.29</td></rl<>	0.29
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-34	MITC	<rl< td=""><td>0.10</td></rl<>	0.10
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-39	MITC	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-43	MITC	<rl< td=""><td>0.75</td></rl<>	0.75
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-46	MITC	<rl< td=""><td>0.03</td></rl<>	0.03
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
MFS-51	MITC	<rl< td=""><td>0.22</td></rl<>	0.22
	1,3-D	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>
	Chloropicrin	<rl< td=""><td><rl< td=""></rl<></td></rl<>	<rl< td=""></rl<>

TABLE 14 - FIELD BLANK QUALITY CONTROL RESULTS

Attachment A

Sampler Photos

Mecca Site Photos

Mecca Fire Station – Facing North

Mecca Fire Station – Facing South

Mecca Fire Station – Facing East

Mecca Fire Station – Facing West

Torres Martinez site – Facing North

Torres Martinez site – Facing South

Torres Martinez site – Facing East

Torres Martinez site – Facing West

Thermal Fire Station Site Photos

Thermal Fire Station Site – Facing North

Thermal Fire Station Site – Facing South

Thermal Fire Station Site – Facing East

Thermal Fire Station Site – Facing West

Mass Flow Meter Certification Report

Device Under Test

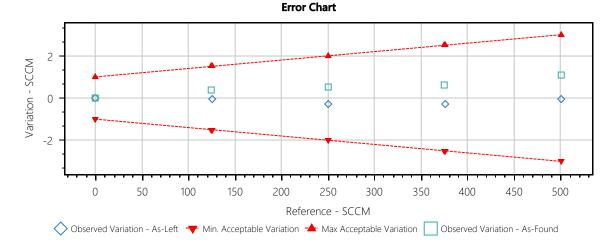
Alicat Scientific, Inc.	Software Version:	7v22.0-R22
State of California Air Resources Board	Pressure Range:	60.00 PSIA
R57281	Pressure Accuracy:	±0.5% of full scale
194557	Temperature Accuracy:	±1.5°C
MWB-500SCCM-D	Standard Temp. & Pressure:	25.00°C, 14.69595 PSIA
5M, GAS: Air, RANGE (500.00 SCCM), HC	Normal Temp. & Pressure:	0.00°C, 14.69595 PSIA
500.00 SCCM	Calibration Procedure:	DOC-AUTOCAL-GASFLOW/Rev. 95
Air (Selectable)	Calibration Date:	2022-11-01
Air	Certificate Number:	434786
27.65°C	Cal. due 1 yr. after receipt:	
36%		
	Alicat Scientific, Inc. State of California Air Resources Board R57281 194557 MWB-500SCCM-D 5M, GAS: Air, RANGE (500.00 SCCM), HC 500.00 SCCM Air (Selectable) Air 27.65°C	Alicat Scientific, Inc.Software Version:State of California Air Resources BoardPressure Range:R57281Pressure Accuracy:194557Temperature Accuracy:MWB-500SCCM-DStandard Temp. & Pressure:5M, GAS: Air, RANGE (500.00 SCCM), HCNormal Temp. & Pressure:500.00 SCCMCalibration Procedure:Air (Selectable)Calibration Date:AirCertificate Number:27.65°CCal. due 1 yr. after receipt:

Equipment Used

Equipmen	Equipment Used All test equipment used for calibration is NIST traceable						
Туре	Tool Name	Manufacturer/Model	Uncertainty	Due Date			
Flow	TOOL-MOLBOX2	DH Instruments - Molbox 1 A	NA \ Determined by Molbloc	2025-01-11			
Flow	TOOL-MOLBLOC3	DH Instruments - 1E3-VCR-V-Q	± 0.2%	2023-02-04			
Voltage	TOOL-AIOC27	Alicat - AIOC	\pm 2.5mV and 4 μA	2022-12-21			

Calibration

Accuracy: $\pm 0.4\%$ of reading + $\pm 0.2\%$ of full scale. Full Scale Range: 500.00 SCCM Calibration Pressure: 13.53 PSIA


Output 1 Configuration

8-pin mini-DIN - Pin #6

As-Found As-Left Indicated Actual In Tolerance Indicated Actual In Tolerance Output 1 Output 2 0.00 0.00 Yes 0.00 0.00 Yes 0.000 Vdc 5.120 Vdc 125.45 125.07 Yes 125.16 125.22 Yes 1.252 Vdc 5.120 Vdc 250.40 249.89 Yes 250.13 250.40 Yes 2.501 Vdc 5.120 Vdc 375.99 375.38 Yes 375.39 375.66 Yes 3.754 Vdc 5.120 Vdc 501.81 500.72 500.67 500.73 Yes 5.007 Vdc 5.120 Vdc Yes

Output 2 Configuration

8-pin mini-DIN - Pin #2

Device Under Test

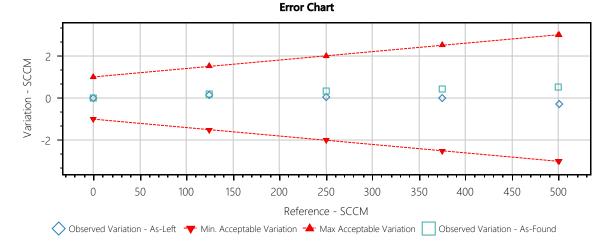
Defice official re			
Manufacturer:	Alicat Scientific, Inc.	Software Version:	7v22.0-R22
Customer:	State of California Air Resources Board	Pressure Range:	60.00 PSIA
Service Order:	R57281	Pressure Accuracy:	±0.5% of full scale
Serial Number:	194559	Temperature Accuracy:	±1.5°C
Model Number:	MWB-500SCCM-D	Standard Temp. & Pressure:	25.00°C, 14.69595 PSIA
Adder Codes:	5M, GAS: Air, RANGE (500.00 SCCM), HC	Normal Temp. & Pressure:	0.00°C, 14.69595 PSIA
Range:	500.0 SCCM	Calibration Procedure:	DOC-AUTOCAL-GASFLOW/Rev. 95
Process Gas:	Air (Selectable)	Calibration Date:	2022-11-01
Calibration Gas:	Air	Certificate Number:	433465
Temperature:	26.24°C	Cal. due 1 yr. after receipt:	
Humidity:	36%		

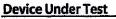
Equipment Used

Equipmen	Equipment Used All test equipment used for calibration is NIST traceable						
Туре	Tool Name	Manufacturer/Model	Uncertainty	Due Date			
Flow	TOOL-MOLBOX2	DH Instruments - Molbox 1 A	NA \ Determined by Molbloc	2025-01-11			
Flow	TOOL-MOLBLOC3	DH Instruments - 1E3-VCR-V-Q	± 0.2%	2023-02-04			
Voltage	TOOL-AIOC27	Alicat - AIOC	\pm 2.5mV and 4 μA	2022-12-21			

Calibration

Accuracy: $\pm 0.4\%$ of reading + $\pm 0.2\%$ of full scale. Full Scale Range: 500.0 SCCM Calibration Pressure: 13.54 PSIA


Output 1 Configuration


8-pin mini-DIN - Pin #6

As-Found As-Left Indicated Actual In Tolerance Indicated Actual In Tolerance Output 1 Output 2 0.00 0.00 Yes 0.0 0.0 Yes 0.000 Vdc 5.120 Vdc 125.04 125.22 Yes 125.1 125.0 Yes 1.251 Vdc 5.120 Vdc 250.44 250.11 Yes 250.0 250.0 Yes 2.500 Vdc 5.120 Vdc 375.63 375.22 Yes 375.1 375.1 Yes 3.751 Vdc 5.120 Vdc 500.92 500.39 500.6 500.9 Yes 5.006 Vdc 5.120 Vdc Yes

Output 2 Configuration

8-pin mini-DIN - Pin #2

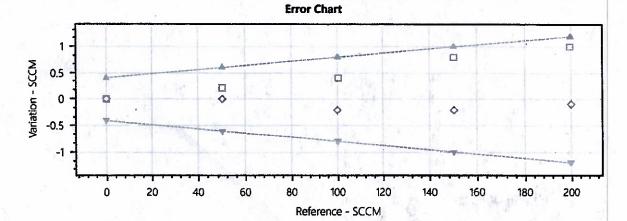
Device Viluei I			
Manufacturer:	Alicat Scientific, Inc.	Humidity:	36%
Customer.	State of California Air Resources Board	Software Version:	7v02.0-R22
Service Order:	R53349	Pressure Range:	60.00 PSIA
Serial Number:	153013	Pressure Accuracy:	±0.5% of full scale
Model Number:	MWB-200SCCM-D	Temperature Accuracy:	±1.5°C
Adder Codes:	5M, GAS: Air, HC	Standard Temp. & Pressure:	25.00°C, 14.69595 PSIA
Range:	200.0 SCCM	Normal Temp, & Pressure:	0.00°C, 14.69595 PSIA
Process Gas:	Air (Selectable)	Calibration Procedure:	DOC-AUTOCAL-GASFLOW/Rev, 95
Calibration Gas:	Air	Calibration Date:	2022-04-01
Temperature:	27.69°C	Certificate Number:	394245

Equipment Used

Equipme	ent Used		All test equipment used	for calibration is NIST traceable.
Туре	Tool Name	Manufacturer/Model	Uncertainty	Due Date
Flow	TOOL-MOLBOX3	DH Instruments - Molbox1-A	NA \ Determined by Molbloc	2024-02-03
Flow	TOOL-MOLBLOC3	DH Instruments - 1E3-VCR-V-	Q ± 0.2%	2023-02-04
Voltage	TOOL-AIOC21	Alicat - AIOC	± 2.5mV and 4µA	2023-02-17

Calibration

 $\pm 0.4\%$ of reading + $\pm 0.2\%$ of full scale. Accuracy: Full Scale Range: 200.0 SCCM Calibration Pressure: 13.54 PSIA


Output 1 Configuration

8-pin mini-DIN - Pin #6

Output 2 Configuration 8-pin mini-DIN - Pin #2

SCIENTIFIC

As-Found							
Indicated	Actual	In Tolerance	Indicated	Actual	In Tolerance	Output 1	Output 2
0.0	0.0	Yes	0.0	0.0	Yes	0.000 Vdc	5.120 Vdc
50.4	50.2	Yes	50.2	50.2	Yes	1.255 Vdc	5.120 Vdc
100.8	100.4	Yes	100.0	100.2	Yes	2.500 Vdc	5.120 Vdc
151.2	150.4	Yes	150.1	150.3	Yes	3.753 Vdc	5.120 Vdc
200.9	199.9	Yes	200.2	200.3	Yes	5.005 Vdc	5.120 Vdc

🔷 Observed Variation - As-Left 🛛 🔫 Min. Acceptable Variation 🛥 Max Acceptable Variation 🦳 Observed Variation - As-Found

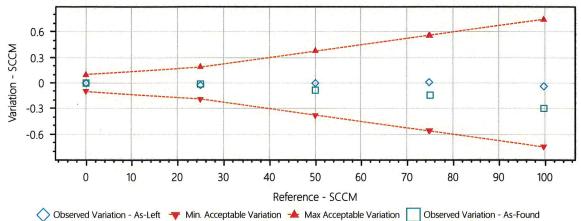
Juan Unan

SALICAT SCIENTIFIC

Device Under Test

Manufact	ufacturer: Alicat Scientific, Inc.		Humidity:				
Customer	Marine et des	State of California Air R	esources Board	Software Version:	8v31.0-R23/RB		
Service Or	der:	R54971		Pressure Range:	60.000 PSIA		
Serial Nun	nber:	271602		Pressure Accuracy:	±0.75% of reading		
Model Nu	mber:	MWB-100SCCM-D		Temperature Accuracy:	±0.75°C		
Adder Coo	des:	GAS: Air, P2: ATM		Standard Temp. & Pressure:	25.00°C, 14.69595 PSIA		
Range:		100.00 SCCM		Normal Temp. & Pressure:	0.00°C, 14.69595 PSIA		
Process Ga	Process Gas: Air (Selectable)			Calibration Procedure:	DOC-AUTOCAL-GASFLOW/Re	v. 95	
Calibratio	n Gas:	Air		Calibration Date:	2022-06-06		
Temperate	ure:	28.44°C		Certificate Number:	404870		
Equipme	ent Used			All te	est equipment used for calibration	is NIST traceable	
Туре	Tool	lame	Manufacturer/Model	Uncertainty		Due Date	
Flow	TOOL	-FLOW80	Alicat - MCM-100SCCM-D	±0.32% reading or ±0.02% f	ull scale, whichever is greater.	2022-06-26	
Voltage	Itage TOOL-AIOC15 Alicat - AIOC		\pm 2.5mV and 4 μ A		2022-11-14		
Calibrati	on						
Accuracy:	1.1.2	0.750/ 6	$\pm 0.1\%$ of full scale, whichever is	and share of the State of the state			

Full Scale Range:100.00 SCCMCalibration Pressure:13.50 PSIA


As-Found Indicated Actual In Tolerance 0.00 0.00 Yes 24.93 24.94 Yes 49.85 49.93 Yes 74.80 74.94 Yes 99.67 99.97 Yes

As-Left		
Indicated	Actual	In Tolerance
0.00	0.00	Yes
24.93	24.95	Yes
49.93	49.93	Yes
74.94	74.93	Yes
99.93	99.96	Yes

Jun Unim

<

Attachment C

Monitoring Field Log Sheets

Site Operator: _______

Week #: _____ Day: ____

Site		Thermal F	re Station 39	Torres Martinez Dese	rt Cahuilla Indians AMS		Mecca Fire	e Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 0 /	TFS (TD) - 10	TM (XAD) - 0 /	TM (TD) -	MFS (XAD) -	MFS (TD) -	MES (XAD) - (FB) FS / CO)	MFS (TD) - (FB) FS / CO)
Barcode		5221118030	400451	5221118025	426667	5221118020	426662	5221122.003	407417
Tube ID									
Sample Start (Date	e, PST)	11/28/22	1246	11/28/22	1207	11/28/22	1131	11/20/22	1131
Sample Stop (Date	, PST)	11/29/22	1225	11/20/22	1143	11/29/12	1047	11/29/22	1046
ETM (Start / Stop (Hours))	19.0	1 42.7	21.4	1 45.0	41,1	64.4	~	/
Flow (Start / Stop ((SCCM))	99,41105	25.2124.1	100.51 106.8	24,9123,8	99.7192.8	24.7122.9	-1-	-1-
Temperature	At Start / Stop (°C)	31,1	1 31,1	31.7	1 31.5	2	2,8	1 30.0	D
remperature	24-Hour Min / Max	10,4	1 33.3	10.8	1 34-0		10.7	1 32,	0
Relative Humidity	At Start / Stop (%)	16	1 21	22	121		26	1 26	
	24-Hour Min / Max	15	1 23	17	23		21	1 28	
Precipitation (At SI	tart / Stop)**	NLM H	/NLMH	(N) MH	N M H		N M H	/NLMH	
Wind (At Start / St	op)***	SLMH	ISLM H	SLMH,	S M H		SLM H	S M H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments			
Flow Meter SN / Barcode(s)	271602		

Shipped / <u>Delivered</u> to Lab (Date , PST, Initials)	12/5/22 1130 m
Shipped / Delivered <5° Celsius?	YN

For Sacramento Drop Off Only Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y/N

Site Operator: ____

VACA

California Air Resources Board Field Data Sheet Eastern Coachella Valley Pesticide Monitoring

Week #: ____ Day: ____

Site		Thermal Fi	ire Station 39	Torres Martinez Dese	rt Cahuilla Indians AMS		Mecca Fir	e Station 40	
Sample Name (Sit	e - # - *P/CO/FS/FB)	TFS (XAD) - 0 2-	TFS (TD) - 0 2	TM (XAD)- OZ	TM (TD)- 0 Z	MFS (XAD) - OZ	MFS (TD) -	MFS (XAD) - (FB/ FS/ CO)	MFS (TD) - (FB/ FS/CO)
Barcode		5221118031	407418	522111 8026	426657	522111 802	1 407459	522/122002	6
Tube ID									
Sample Start (Dat	e, PST)	11/29/22	1232	11/29/22	1152	11/29/22	- 1105	11/29/22	1100
Sample Stop (Date	e, PST)	11/30/22	1212	11/30/22	1135	11/30/22		11/30/22	1051
ETM (Start / Stop	(Hours))	42.7	166.3	45	1 68.7	64,4	1 88.2	212.4	1 236.4
Flow (Start / Stop	(SCCM))	99,51 183	25,3127.9	100,51 101 3	24.7135,6	100.41 148,5	25.0125.5	100.21172.5	25,2 136,6
Temperature	At Start / Stop (°C)	31,1	1 36	30.0	1 32.8	QV23/9	28,9	1 28	
	24-Hour Min / Max	10	1 38,2	9.44	1 37.4	11.0		1 31.7	
Relative Humidity	At Start / Stop (%)	21	1 16	24	116	2	5	1 21	
	24-Hour Min / Max	B	1 25	10	1 25		6	1 26	
Precipitation (At S	tart / Stop)**	NLMH	/ NLMH	NLMH.	/ NLMH		N.M.H	/NLMH	
Wind (At Start / Si	op)***	SLM H	/SLMH	SLMH,	SLMH		SLMH,	SLM H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments			
Flow Meter SN / Barcode(s)	271602		

Shipped / Delivered to Lab (Date , PST, Initials)	12/5/22+ 1130 pm
Shipped / Delivered <5° Celsius?	YN
	6

Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

Site Operator: UACA

California Air Resources Board Field Data Sheet Eastern Coachella Valley Pesticide Monitoring

Week #: ____ Day: ____

Site		Thermal Fi	re Station 39	Torres Martinez Deser	t Cahuilla Indians AMS	1	Mecca Fir	e Station 40	
Sample Name (Sit	e - # - *P/CO/FS/FB)	TFS (XAD) - 03	TFS (TD) - の う	тм (XAD) - СЗ	TM (TD) - 03	MFS (XAD) -	MFS (TD) - Ø 3	MFS (XAD) (FB / FS CO)	MFS (TD) (FB / FS / CO)
Barcode		522111 8032	426656	522-1118027	426660	5221118022	407412	5221122004	426682
Tube ID									
Sample Start (Dat	e, PST)	11/30/22	1220	11/30/22	1142	1/30/22	1110	11/30/22	1109
Sample Stop (Date	a, PST)	12/1/22	1203	12/1/22	1126	12/1/22	1038	12/1/22	
ETM (Start / Stop	(Hours))	66.3	190	68.7	92.4	88,2	1 111.7	236.4	1260
Flow (Start / Stop	(SCCM))	27,3173.8	25,2123.1	105.91 102.8	25,0125.6	100,3173	24.8133.8	100.91127.6	25.2 129.9
Temperature	At Start / Stop (°C)	35	29	32 1	30	28		1 27,8	
• • • •	24-Hour Min / Max	2	1 36	3.89	32.7	3,95		1 32.	8
Relative Humidity	At Start / Stop (%)	16	1 23	20 1	26	2	25	1 25	-
	24-Hour Min / Max	10	1 82	16 1	85		16	1 83	
Precipitation (At S	tart / Stop)**	NLMH,	/ NL м н	NLMH	NLMH		NLMH	/NLMH	
Wind (At Start / St	op)***	SLMH,	/ ѕСмн	SLMH/	SLM H		SLMH	(S) M H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments			
Flow Meter SN / Barcode(s)	271602		

Shipped / Delivered to Lab (Date , PST, Initials)	12/5/22-1130
Shipped / Delivered <5° Celsius?	(Y/N

Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y/N

Site Operator: _______

Week #: _____ Day: _____

Site		Thermal Fi	re Station 39	Torres Martinez Dese	rt Cahuilla Indians AMS		Mecca Fir	e Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 04	TFS (TD) - 04	TM (XAD) - 04	TM (TD) - 04	MFS (XAD) -	MFS (TD) - のイ	MFS (XAD) - (FB / FS / CO)	MFS (TD) - (FB / FS / CO)
Barcode		5221118033	407460	5221118028	926670	522/118023	3 407457	, \	
Tube ID									
Sample Start (Date, PST)		12/1/22	1204	12/1/22	1130-1201	12/1/22	1048		
Sample Stop (Date, PST)		12/2/22	1225	12/2/22	1201	12/2/22			
ETM (Start / Stop (Hours))		90	1 114.3	92.4	1 116.9	111.7	136,3		X
Flow (Start / Stop	(SCCM))	101.51 107.3	24.8123.4	101.3193.0	25.51210	100.5 1107,6	25.2125.2	1	/ /
Temperature	At Start / Stop (°C)	29	1 21,06	3530	1 21,06	27	2-1	/	
	24-Hour Min / Max	<u> </u>	1	P	1	Contraction of the local division of the loc		1	
Relative Humidity	At Start / Stop (%)	23	1 22	26	24	24	0	1 20	
	24-Hour Min / Max	- ,	/		1 —	_		1	
Precipitation (At Start / Stop)**		NLMH,	/ N L M H	NLMH,	/ N L M H		NLMH	/ N L M H	
Wind (At Start / Stop)***		SLMH,	/SLMH	SLMH,	/SLMH		SLMH	/SLMH	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	Did Not necond nin/MAX Temp/nut on This day	
Flow Meter SN / Barcode(s)	271602	

Shipped / Delivered to Lab (Date , PST, Initials)	12/5/22 1130 Pm
Shipped / Delivered <5° Celsius?	YN

Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y/N

Site Operator: K. AGUILEPA

Week #: 2 Day: ____

Site		Thermal	Fire Station 39		rt Cahuilla Indians AMS		Mecca Fire	e Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 05	TFS (TD) - 05	TM (XAD)- 05	TM (TD)- 05	MFS (XAD) - 05	MFS (TD) - 05	MFS (XAD)- (FB / FS 05	MFS (TD) (FB / FS 0 05
Barcode		S221202021		S221202025		S221202016		5221202039	
Tube ID			426671		400454		407472		407411
Sample Start (Date	e, PST)	12/06/22	12:06	12/06/22	11:16	9:49	10:00	10:39	16:27
Sample Stop (Date	, PST)	12/07/22	12:04	12/07/22	10:53	9:11	9:17	9:58	9:52
ETM (Start / Stop (Hours))		114.4	1383	117	/ 140.6	136.4/159.8	167.7/191	1668.9/	260.1/283.5
Flow (Start / Stop (CCM SCCM))	101.8/99.8	3 25.6 / 22.1	99.7/ 109	25.1/24.1	100.1/ 99.7	24.9/25.2	100.4/140.1	25 123.5
Temperature	At Start / Stop (°C) *	29.66	/ 27.36	29.68	1 27.16	2	3	/ 22.0	3
Alica+*	24-Hour Min / Max	-	/ _	8	1 32	7	-	/ 28	
Relative Humidity	At Start / Stop (%)	16	/ 16	28	/ 28	31	6	/ 33	
	24-Hour Min / Max	-	/	24	172	2	.1	68	
Precipitation (At Start / Stop)**		NLM H	/NLMH	NLMH.	/NLMH		NLMH,	/ NLMH	
Wind (At Start / Stop)***		s () м н	/ slm h	SLMH.	SLMH		SLMH,	/slMh	

*Circle One, If Applicable - Primary, Fleid Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	-Arrived to site after 24-Hr Min/Max had cleared on Acorite (1217)	-Alicat slightly warns as -other A had been left on TD Grow I overnight. S/N:1945 cert: 1170	reading.
Flow Meter SN / Barcode(s)	153013		

Shipped / Delivered to Lab (Date , PST, Initials)	12/12/22 11:06 Ry
Shipped / Delivered <5° Celsius?	(Y) N

Y/N

Site Operator: K.AGUILEPA

Week #: 2_Day: 2_

Site		Thermal Fi	re Station 39	Torres Martinez Dese	rt Cahuilla Indians AMS		Mecca Fir	e Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB}	TFS (XAD) - OG	TFS (TD) -	TM (XAD) - 06	TM (TD) - 06	MFS (XAD) -	MFS (TD) -	MFS (XAD) - (FB (FS) CO) OG	MFS (TD) - (FB / FS CO) OG
Barcode		S221202022		S221202026		SZ21202017		5221202041	
Tube ID			426668		426659		407451		407414
Sample Start (Date	e, PST)	12/07/22	12:22	12/07/22	11:31	9:40	9:46 12107122	10:14	10:22
Sample Stop (Date, PST)		12/08/22	11:45	12108122	10:45	8:44	8:48	9:26	9:29
ETM (Start / Stop (Hours))		138.4	/ 161.8	140.7	163.9	159.8/182.9	191/214.1	1692.3/	293.6/306.7
Flow (Start / Stop ((CEN)	100.7/113.2	25.1 /23.8	99.9/106.6	24.8/24.7		24.6 / 24	99.4 / 100.8	
Temperature	At Start / Stop (°C) *	27.97	/ 25.6	26.83	1 25.52	2	1.4	/ 20.	2
Alica +*	24-Hour Min / Max	3	/ 49	3	' 33		6	/ 29	
Relative Humidity	At Start / Stop (%)	16	/ 16	27	/ 29		32	/ 31	
	24-Hour Min / Max	16	68	16	/ 81		16	/ 61	
Precipitation (At Start / Stop)**		N LМН	/ 🕡 l M H	NLMH.	/NLMH		N L M H	/NLMH	
Wind (At Start / St	op}***	s (т) м н	/SLMH	SLMH	SLMH		slMн	∕s€m h	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	- cover of white box Acurite is in left off too long which may explain high temp max.
Flow Meter SN / Barcode(s)	153013

Shipped / Celivered to Lab (Date , PST, Initials)	12/12/22 11:06 RD
Shipped / Delivered <5° Celsius?	() N

For Sacramento Drop Off Only						
Received By Lab (Date , PST, Initials)						
Received <5° Celsius?	Y/N					

Site Operator: K. AGUILERA

Week #: <u>2</u> Day: <u>3</u>

Site	<u> </u>	Thermal F	ire Station 39	Torres Martinez D	esert Ca	huilla Indians AMS		Mecca Fin	e Station 40	
Sample Name (Site - # - *P/CO/FS/FB)		TES (XAD) - 07	TFS (TD)- O7	TM (XAD)- 0=	7 1	(TD)-07	MFS (XAD) - 07	MFS (TD) -	MES (XAD) - OT-	MES (TD) - (FB/ FS / CO)
Barcode		S221202023		5221202027		S22120	SZ21202018		040	
Tube ID		and a state of the state	426069		Ц	26652		407420		426678
Sample Start (Date, PST)		12/08/22	12:12	12/08/22		11:14	9:20	9:17 12/08/22	9:33 12/08/22	934
Sample Stop (Date, PST)		12/09/22	11:22	12/09/22	2	10:21	9:01	9:04	9:07	9:08
ETM (Start / Stop (Hours))	161.8	/ 185	164	64 187.1 182.4/206.6 214.2/238 -		-			
Flow (Start / Stop	CCM (SCCM))	100.6/103.2	25.1 /24.2	100.1 / 124.	6 29	3 125.2	97.4/ 99.5	24.6/25	- / -	- /
Temperature	At Start / Stop (°C) *	28.81	126.27	26.43	1	25.72		21	/ 17.8	
Alicat*	24-Hour Min / Max		/ 37	2	1	30		2	' 30	
Relative Humidity	At Start / Stop (%)	16	/ 16	28	1	31		28	/ 43	
	24-Hour Min / Max	16	1 66	16	1	76		16	' 67	
Precipitation (At Start / Stop)**		Ф ЕМН	/ 🕡 L М Н	NLMH	+/0	р гин		NLMH	NLMH	
Wind (At Start / St	op}***	SLM H	/SLMH	SLM H	+ /(s	Смн		s (см. н.	SLMH	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments					
Flow Meter SN / Barcode(s)	153013			•	

Shipped (Delivered to Lab (Date , PST, Initials)	12/12/22 11:06 (2)
Shipped / Delivered <5° Celsius?	(Y)/ N

For Sacramento Drop Off Only	
Received By Lab (Date , PST, initials)	
Received <5° Celsius?	Y / N

Site Operator: K.AGUILEPA

Week #: 2 Day: 4

Site		Thermal Fire Station 39		Torres Martinez Des	ert Cahuilla Indians AMS	Mecca Fire Station 40			
Sample Name (Site - # - *P/CO/FS/FB)		TFS (XAD) - 08	TFS (TD) - OB	TM (XAD) - 08	TM (TD)-08	MFS (XAD) 08	MFS (TD) -	(FBV FS / CO)	MFS (TD) - (FB / FS / CO)
Barcode		5221202024				S221202	5221202019		
Tube ID			407456		407452		407458		
Sample Start (Date	e, PST)	12/09/22	11:40	12/09/22	10:45	9:15	9:19		\mathbf{i}
Sample Stop (Date, PST)		12/10/22	10:54	12/10/22	9:50	8:35	8:37		\backslash
ETM (Start / Stop (Hours))		185	1 208.3	187.2	1 210.3	206.7/230	238/261.3		
Flow (Start / Stop		100.3 / 86.	2 25.2 / 23.7	100.7, 102.7	25.4 /23.8	97.7/101.3	24.2 /24.7	1	1
Temperature	At Start / Stop (°C) *	26.1	/ 21.26	26.32	19.68	18.0		1 17.	2
Alicat*	24-Hour Min / Max	0	1 37	1	/ 31		1	/ 28	
Relative Humidity	At Start / Stop (%)	16	/ 23	28	/ 35	3	6	/ 48	
	24-Hour Min / Max	16	1 74	16	1 75	1	16		
Precipitation (At Start / Stop)**		()) L M H	/ NLMH	NLMH/NLMH		NLMH/NLMH			
Wind (At Start / St	:op)***	SLM H	/SLМН	SL M H	/SLMH	(SLМН/(S)LМН			

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	- White box in which Acurife is in had fallen cover upon arrival to site 12/10/22
Flow Meter SN / Barcode(s) 153013	

Shipped Delivered to Lab (Date , PST, Initials)	12/12/72 11:06 00
Shipped / Delivered <5° Celsius?	(ŸY N

Y/N

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

Week #:	2

				Thermal F	ire Station	Torres Martinez	Mecca Fire Station	
				Unit #	3	Unit #_Z_	Unit #	Unit #
	Ч	Temperature	At Start / Stop (°C)	39	' 33	29 / 28	19 / 20	/
Day 1	6 2	(Acurite)	24-Hour Min / Max		/	8 / 32	7 / 28	1
	5	Relative Humidity	At Start / Stop (%)	16	16	28 / 28	36 ' 33	1
	Date:	(Acurite)	24-Hour Min / Max		/	24 172	21 ' 68	1
	5	Temperature	At Start / Stop (°C)	46	37	27 / 28	20 / 22	/
Day 2	712	(Acurite)	24-Hour Min / Max	3	49	3 / 33	6 / 29	/
	N	Relative Humidity	At Start / Stop (%)	16	16	27 / 29	32 / 31	/
	Date:	(Acurite)	24-Hour Min / Max	16	68	16 '81	16 / 61	/
		(Acurite)	At Start / Stop (°C)	36	34	26 / 25	20 / 17	1
Day 3	1812		24-Hour Min / Max	1	37	2 / 30	2 / 30	/
	2	Relative Humidity	At Start / Stop (%)	16	16	28 / 31	28 143	/
	Date:	(Acurite)	24-Hour Min / Max	16	66	16 176	16 / 67	/
	22	Temperature	At Start / Stop (°C)	35	31	26 / 22	21 / 13	/
Day 4	913	(Acurite)	24-Hour Min / Max	0	37-	1 / 31	1 / 28	1
-, -	2	Relative Humidity	At Start / Stop (%)	16	23	28 35	36 / 48	1
	Date:	(Acurite)	24-Hour Min / Max	16	74	16 175	16 '76	1

- on For Day 1, arrived after Acurite reset so couldn't record maximins.

Juan Ranon De La Rama Site Operator:

03		C
Week #:	Day:	V

Site		Thermal I	Fire Station 39	Torres Martinez De	esert Cahuilla Indians AMS		Mecca Fire Station 40			
Sample Name (Site	e - # - *P/CO/FS/FB}	TFS (XAD) - 09	TFS (TD)- 09	TM (XAD) - Q9	TM (TD)- 09	MFS (XAD) - 09		MFS (XAD) -	MFS (TD) -	
Barcode		5221212028		522121032		S22121203	S221212033		60	
Tube ID			400456		426601		425684		407453	
Sample Start (Date	e, PST)	12/14/2022 1230p		12/14/2022 12030		12/14/2022	12/14/2022 11189		11289	
Sample Stop (Date, PST)		12/15/2022	1149a	12/15/20	22 1107a	12/15/2022	10189	12/15/2022	10280	
ETM (Start / Stop (Hours))		208.4	1231.7	210.3	/ 233.4	230.2/253.2	261.51 284.6	1716.0/1739.0	307.2 / 330.2	
Flow (Start / Stop (CCM))		98.57 / 158.6	0 25.10 /25.2]	100.08/100.1	8 25.04/24.00	99.71 / 104.01	25.00 125.16	99.30 / 95.20	25.10/24.26	
Temperature	At Start / Stop (°C)	26.70	1 25.27	27.10	1 21.24	21.7	10	1 20.0	14	
(Alicat)	24-Hour Min / Max	/	11	/	1 /	/		/ /		
Relative Humidity	At Start / Stop (%)	16	1 16	15	1 22	16		1 26		
(Acurite)	24-Hour Min / Max	16	1 75	16	1 76	16		1 72		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	759	768	770	770	774	775	774	775	
Precipitation (At Start / Stop)**		(N) L M H / (D) L M H		NLMH/NLMH		NLMH/NLMH				
Wind (At Start / St	op)***	s Ø м н / s Ø м н		S () M H / (S L M H		i.	s 🗋 m h / s l m h			

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), light (L), Moderate (M), Heavy (H)

Field Notes / Comments			
Flow Meter SN / Barcode(s)	194557	3	•

Shipped / Delivered to Lab (Date , PST, Initials)	12/19/2022 12000 JD
Shipped / Delivered <5° Celsius?	()/N

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y/N

J De La Rama Site Operator:

Week #: _____ Day: ____ 02___

Site		Thermal Fi	re Station 39	Torres Martinez De	sert Cahuilla Indians AMS		Mecca Fire	e Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB}	TFS (XAD) - 10	TFS (TD) - 0	TM (XAD) - 10	тм (тр)- (О	MFS (XAD) -	MFS (TD) - 10	MES (XAD) - (FB)/ FS / CO)	MFS (TD) - (FB) FS/CO)
Barcode		522/2/20	127	5221212031		522/2/20	034	52212120	61
Tube ID			400458		407415		400452		400455
Sample Start (Date	e, PST)	12/15/2022	11549	12/15/202	2 1117a	12/15/202	2 1030 a	12/15/2022	1040a
Sample Stop (Date	, PST)	12/15/202	2 10549	12/16/202	2 10179	12/16/2022	2 0932a	12/15/2022	10459
ETM (Start / Stop (Stop (Hours)) 231.7 1254.7 233.4 1256.5 253.21276.3 284.61307.6 173		1739.01 1739.0	330.21330.2					
Flow (Start / Stop	(CCM))	100.21/113.89	24.55,24.30	99.88/ 101.8	9 24.8624.69	100.00/100.27	25.25/25.90	0 10	010
Temperature	At Start / Stop (°C)	23.31	1 21.86	21.19	1 21.13	20.94		/ 18.9	8
(Alicat)	24-Hour Min / Max	-	1 /	-	1/			1	<u> </u>
Relative Humidity	At Start / Stop (%)	16	128	16	1 38	26	-	/ 44	
(Acurite)	24-Hour Min / Max	16	66	16	1 74	20		1 65	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	768	771	770	772	769	772	769	772
Precipitation (At Start / Stop)**		N L M H	/ 🕅 L М Н	NLMH/NLMH			()) смн,	/ 🕅 L М Н	
Wind (At Start / St	slop)*** s@MH/SØMH SLMH/ØLMH sØMH/SLM		/SLMH						

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		PVC Counting XAD from fell orf during run.
Flow Meter SN / Barcode(s)	194557	

Shipped / Delivered to Lab (Date , PST, Initials)	12/11/2022 1200p	TD	٦
Shipped / Delivered <5° Celsius?	Ø/ N		

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

Site Operator: Juan Rann Du La Rang

Week #: 03 Day: 03

Site		Thermal Fi	re Station 39	Torres Martinez Dese	rt Cahuilla Indians AMS		Mecca Fire	e Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) -	TFS (TD) -	TM (XAD) -	TM (TD) -	MFS (XAD) -	MFS (TD) -	MFS (XAD) - (FB / FS/ CO)	MFS (TD) - (FB (FS/ CO)
Barcode		52212120	26	52212120	5221212030		5221212057 5221212062		62
Tube ID			426681		426680		426658		407419
Sample Start (Date	e, PST)	12/16/2022	2 10:559	12/15/2022	- 1018 a	12/16/2022	0938a	12/15/2022	0925
Sample Stop (Date	, PST)	12/17/202	2 09589	12/17/2022	09279	12/17/2022 08389 12/17/2022		0829	
ETM (Start / Stop (Hours))	254.7	1277.8	256.5	, 279.6	276,412994 307.71330.7 1739. 01762.2 330.		330.31353.4	
Flow (Start / Stop (CCM))		100.31/201.01	25.41/24.51	100.29/100.55	25.00/24.67	99.30 / 94.80	24.98 22.85	99.90196.29	25.08123.28
Temperature	At Start / Stop (°C)	21.62	1 19.37	21.09	1 18.07-	1	9.09	1 12.37	1
(Alicat)	24-Hour Min / Max	/	1	/	1 /		i i i i i i i i i i i i i i i i i i i	1	
Relative Humidity	At Start / Stop (%)	25	130	38	/ 31	L	1 4	/ 36	
(Acurite) 24-Hour Min / Max		15	151	16	1 61		16	1 58	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	771	770	772	772	772 774 772 774 7		772	
Precipitation (At S	tart / Stop)**	()) смн	/ 🕅 L М Н	NLМН	/ 🕅 L М Н	н 🔊 смн/ ()) смн			
Wind (At Start / Stop)***		s () мн	/ ѕ () м н	SLMH/SLMH		SLMH/SLMH			

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	No adjustment or referencing needelon Sample Start.	
Flow Meter SN / Barcode(s)	194557	

Shipped / Delivered to Lab (Date , PST, Initials)	12/11/2022 1200 DD
Shipped / Delivered <5° Celsius?	(ŷ/ N

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	2
Received <5° Celsius?	Y/N

J De La Rana Site Operator:

03 Week #: _ Dav:

Site		Thermal Fir	re Station 39	Torres Martinez Deser	rt Cahuilla Indians AMS				Mecca Fire	e Station 40	
Sample Name (Site	- # - *P/CO/FS/FB)	TFS (XAD) - 12	TFS (TD) - 12	TM (XAD)- 12	TM (TD)- 12	MFS (XAD) -	12	MFS (TD) -		MFS (XAD) - (FB / FS / CO)	MFS (TD) - (FB / FS / CO)
Barcode	r.	522121202	15	5221212	029	522	1212	058			
Tube ID			407413		426679			426	685		
Sample Start (Date	, PST)	12/17/2022	10004	12/17/2022	09:369	12/17	2022	- <u>0</u>	8440	/	
Sample Stop (Date	, PST)	12/18/202	2 10119	12/18/2022	2 09:45a	12/18	1202	2 0	906 a	/	
ETM (Start / Stop (Hours)) 277.7 1302.0 279.8 1303.9 299.51 323.9 330.8 1355.2		//	///								
Flow (Start / Stop (CCM))		101.90/100.70	24.65/24.84	99.18/95.11	25.33 125.86	102.20 /	93.46	24.92	,23.32	/1/	///
Temperature	At Start / Stop (°C)	18.45	1 20.61	18.26	1 19.84		11.05	s		1 12.72	2
(Alicat)	24-Hour Min / Max	/	1/	/	1/		/	_		/ /	~
Relative Humidity	At Start / Stop (%)	16	/ 23	29	1 24		32			1 35	
(Acurite)	24-Hour Min / Max	16	1 56	25	1 24		3 5	F		1 36	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	769	767	770	767	77	-5	77	-2		
Precipitation (At Start / Stop)**		₿∟мн	/ 🕅 L М Н	҈∩гмн	/ NLMH			№ ГМН/ФГМН			
Wind (At Start / St	op)***	s (); м н	/ § смн	О Г М Н	/ (3 СМН			S .L	Øн	/SLMH	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments			
Flow Meter SN / Barcode(s)	194557		

Shipped / Delivered to Lab (Date , PST, Initials)	12/19/2022 12001 JD		
Shipped / Delivered <5° Celsius?	(Y)/ N		

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

Week #:	O3
WVCCK #.	

				Thermal Fire Station	Torres Martinez	Mecca Fir	e Station
				Unit #	Unit #	Unit #	Unit #
		Temperature	At Start / Stop (°C)	26 133	21 , 36	18,21	1
		(Acurite)	24-Hour Min / Max	-1,49	1 1 36	1 / 24	1
Day 1		Relative Humidity	At Start / Stop (%)	16/15	16 / 22	15126	/
	Date:	(Acurite)	24-Hour Min / Max	16 175	15175	15 172	1
		Temperature	At Start / Stop (°C)	33 128	36 1 19	21/13	/
		(Acurite)	24-Hour Min / Max	3 147	4 138	4 126	1
Day 2		Relative Humidity (Acurite)	At Start / Stop (%)	16 / 28	15 138	26 144	
	Date:		24-Hour Min / Max	16 / 66	16 174	20155	1
		Temperature (Acurite)	At Start / Stop (°C)	28,19	20 1 20	14 / 14	/
			24-Hour Min / Max	-3 135	0 138	-1 127	1
Day 3		Relative Humidity (Acurite)	At Start / Stop (%)	25 130	38 131	44,36	/
	Date:		24-Hour Min / Max	16 1 58	15 / 61	16 158	Ĩ
		Temperature	At Start / Stop (°C)	28,26	23,24	16 / 18	/
		(Acurite)	24-Hour Min / Max	2 1 27	24 124	18 / 19	1
Day 4		Relative Humidity	At Start / Stop (%)	16 / 23	29/24	32 1 35	/
	Date:		24-Hour Min / Max	16 156	25124	35 136	1

.

1. Osernio Site Operator:

Week #: ____ 4 ___ Dav: ____ 1

Site		Thermal F	ire Station 39	Torres Martinez De	esert Cahuilla Indians AMS		Mecca Fir	e Station 40	
Sample Name (Site - # - *P/CO/FS/FB)		TFS (XAD) -	TFS (TD) - 3	TM (XAD) - 13	TM (TD) - 13	MFS (XAD) - 13	MFS (TD) -	MFS (XAD) - (FB) FS / CO)	MFS (TD) - (FB / FS / CO)
Barcode		32212	14049	32212	14053	52212	14040	322 [2]	4059
Tube ID			426654		426603		426657		42667
Sample Start (Date, PST)		12/20/22	1238	12/20/22	1200	10 54	1058	1045	1252 102 162
Sample Stop (Date, PST)		12/21/22	1206	12/21/22	1126	1032	1033		
ETM (Start / Stop (Hours))		302.1	/ 325.5	304.1	1 327.5	323.9 1347.6	3.55.3 1378.8	/	/
Flow (Start / Stop	(CCM))	99.6 / 83.7	25.9/25.4	100.4 / 100.	8 25.6/26.2	100.7 / 98.9	25.8/ 24.5	10000 160	25.5K 160
Temperature (Alicat)	At Start / Stop (°C)	27.29	1 28.58	25.04	/ 29.82		27. 42	/ 21.19	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	770	1 767	771	1 768		772	1 772	
Relative Humidity	At Start / Stop (%)	16	/ (6	16	/ 16		33	/ 30 -	
(Acurite)	24-Hour Min / Max	16	/ 75	lb	1 70		16	1 75	
Precipitation (At S	tart / Stop)**	NLM H	/NLMH	NLM H	/NLMH		NLMH	/ 🔊 L М Н	
Wind (At Start / St	op)***	SUМН	/SLMH	SLM H	/ ѕしмн		S 🕕 M H	/SLMH	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

© all three sites : removed Acurite box cover to see effect on unit temp readings.

Field Notes / Comments	Hursesting Onions in neurby field (12/20 2 12/21)	Mistukenly Got flow readings on FB media- will redo
------------------------	--	---

Flow Meter SN / Barcode(s)

194559

		For Sacramento Drop Off Only	
Shipped / Delivered to Lab (Date , PST, Initials)		Received By Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	Y / N	Received <5° Celsius?	Y / N

Site Operator: 1. CSURNIO

Week #: _____ Day: _____

Site		Thermal Fir	e Station 39	Torres Martinez Des	ert Cahuilla Indians AMS	Mecca Fire Station 40			
Sample Name (Site - # - *P/CO/FS/FB)		TFS (XAD) -	TFS (TD) - 1	TM (XAD) - 14	тм (тр) - Ц	MFS (XAD) - 14	MFS (TD) -	MFS (XAD) - (FB (FS) CO) (4	MFS (TD) - (FB / FS / CO) (4
Barcode		\$2212	4050	52212	14054	\$221	214061	S221214057	
Tube ID			426672		426661		407474		407416
Sample Start (Date, PST)		12/21/22 122	0	12/21/22	1137	1051	1053	12/21/22	1045
Sample Stop (Date, PST)		12/ 22/22 11	48	12/22/22	1106	(* 20 12/22/22	(02) (2/22/22	1011	1012 12/22/22
ETM (Start / Stop (Hours))		325.6	349.1	327.1	1 35LD	347.6/ 371.1	378.81 402.3	1762.4/1785.9	353.51 376.9
Flow (Start / Stop	(CCM))	100.7/ 189.2	25.6/24.4	100.0/92.8	25.71 24.8	99.9 / 100.2	25.0 / 24.9	99.6/106.4	25.1.125.2
Temperature (Alicat)	At Start / Stop (°C)	33.4	26.83	29.93	/ 24.38		24.16	/ 16.18	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	766	767	768	1 767		770	1 773	
Relative Humidity	At Start / Stop (%)	21	30	22	/ (6		28	1 46	
(Acurite)	24-Hour Min / Max	16	17	li	/ 72		25	1 71	
Precipitation (At Start / Stop)**		NLMH,	′ 🕅 Г М Н	N L M H	/ 🔊 L М Н	т.	Я И И	/ 🕂 L М Н	
Wind (At Start / Stop)***		sсмн,	′ s 🗋 m h	S 🕩 М Н	/SLMH		SLM H	/ s () м н	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

12/21

Field Notes / Comments	Hurvesting onions in	
	hearby field	

Flow Meter SN / Barcode(s)

194559

12/22 -	Horvesting	DAIDAL
	. 9	1.1.1.1.2

Shipped / Delivered to Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	Y / N

For Sacramento Drop Off Only Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

Site Operator: 1. OSOR MID

	lí	2
Week #:	Day:	2

Site		Thermal Fire Station 39		Torres Martinez De	esert Cahuilla Indians AMS		Mecca Fire Station 40						
Sample Name (Sit	e - # - *P/CO/FS/FB)	TFS (XAD) - 5	TFS (TD) - 15	тм (XAD) - іђ	TM (TD) - 15	MFS (XAD) -	15	MFS (TD) -	15	MFS (XAD) - (FB / FS / CC		MFS (TD) - (FB / FS / CO	D 15
Barcode		5221214051		3 22121 40 56			3221214062			5221214058			
Tube ID			426651		426663			4074	80			407454	
Sample Start (Date	e, PST)	12/22/22 11	58	12/22/22	1115	12/12/12	1035	12/22/22	1037	12 22 22	1029	12/22/22	1030
Sample Stop (Date	e, PST)	12/23/22	141	12/23/22	1108	12/13/12	1012	12/23/22	1014	2 23 22	1006	12/23/22	1007
ETM (Start / Stop	(Hours))	349.1	372.8	351.1	/ 37.5	371.1 / 394.7 402.3 / 425.9 1785.9 / 1809.5 377,				377.0/	400.6		
Flow (Start / Stop	(CCM))	100.71 94.3	25.2/ 24.7	100.6/ 100	5 24.5 / 28.0	100.1/	97.6	24.7	23.9	100.5	97.6	24.7 /	22.5
Temperature (Alicat)	At Start / Stop (°C)	28.9	29.12	25.82	1 29.24			24.	59	/ 21.	16		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	767	768	768	1 769			7	70	/ 77	12		
Relative Humidity	At Start / Stop (%)	29	30	26	/ 30			34 77	10-160	/ 42			
(Acurite)	24-Hour Min / Max	20	77	22	1 74				27	1 74			
Precipitation (At S	tart / Stop)**	№ L М Н ,	NLMH	🔊 L М Н	I/NLMH			N L	МΗ	/ Ŋ L	мн		
Wind (At Start / Stop)*** SLMH/SLMH SLMH/SLMH SLMH SLMH / SLMH / SLMH				s 🗋 м н	I/SLMH			S 🜔	M H	/ S 🕕 M	ИΗ		

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

	12/22 - Harvesting onions	
Field Notes / Comments		

Flow Meter SN / Barcode(s)

194554

Shipped / Delivered to Lab (Date , PST, Initials)		
Shipped / Delivered <5° Celsius?	Y / N	

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

Week #: _____ Day: _____

Site		Thermal F	Fire Station 39	Torres Martinez Deser	t Cahuilla Indians AMS				Mecca Fire	e Station 40			
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) -	TFS (TD) -	TM (XAD) -	тм (тр) - Ц	MFS (XAD) -	16	MFS (TD) -	16	MFS (XAD) - (FB) FS / CO) 16	MFS (TD) - (FB) FS / CO)	16
Barcode		52212	14052	5221214055			J 22	121406	3	5221214064			
Tube ID			42665 42665		14926666			407	417			160-407	F5 42
Sample Start (Date	e, PST)	2 23/22	1201	12/23/22	117	12 23 22	1038	[2] 23] 22	1039	12 23 22	(021	12/23/22	023
Sample Stop (Date	e, PST)	12/24/22	103	12/24/22	1033	12/24/22	0955	12/24/22	0956	12/24/22	1026	12/24/22	1029
ETM (Start / Stop ((Hours))	373.1	1 396.1	375.0	398.3	3 94.1	f 418.0	426.0	449.2		<		\leq
Flow (Start / Stop	(CCM))	100.91 59	25.3123.g	100.4/97.0	25.1 / 24.2	99.4	197.2	25.1	23.5	>+	<		\langle
Temperature (Alicat)	At Start / Stop (°C)	34.87	/ 31.6	30.15	26.43			28.62	221900	/ 20.4	52		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	767	/ 771	768	773				171	/ 776			
Relative Humidity	At Start / Stop (%)	26	1 16	31	25				35	1 23	190 2=	7	
(Acurite)	24-Hour Min / Max	16	171	22	74				22	/ 73			
Precipitation (At S	tart / Stop)**	NLM H	/ NLMH	NLMH,	/NLMH			N L	МΗ	/NL M	ИΗ		
Wind (At Start / St	op)***	S D M H	/ SLM H	SLMH,	/ SLM H			SL	ΜН	SL N	ЛН		

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

	12/23: Took a white (<10 min) for XAD chunnel flow to Stabilize			
--	---	--	--	--

	Flow Meter SN / Barcode(s)	194559
ſ	Shipped / Delivered to Lab (Date , PST, Initials)	
	Shipped / Delivered <5° Celsius?	Y / N

For Sacramento Drop Off Only		
Received By Lab (Date , PST, Initials)		
Received <5° Celsius?	Y / N	

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

Week	44.	4
week	#:	

				Thermal Fire Station	Torres Martinez	Mecca Fire Station	
				Unit # <u>3</u>	Unit #	Unit #	Unit #
		Temperature	At Start / Stop (°C)	29 / 28	28 / 27	22 / 20	1
Day 1	0	(Acurite)	24-Hour Min / Max	0 / 53	1 / 50	1 / 24	/
Dayı	11/20	Relative Humidity	At Start / Stop (%)	16 / 6	16 / 16	33 / 29	/
	Date:	(Acurite)	24-Hour Min / Max	16 / 75	16 / 70	16 1 75	/
		Temperature	At Start / Stop (°C)	28 / 24	29 / 26	22 / 17	/
Day 2	-	(Acurite)	24-Hour Min / Max	0 / 44	2 45	2 / 23	/
Dayz	12/21	Relative Humidity (Acurite)	At Start / Stop (%)	21 / 30	15 / 16	28 / 46	/
	Date:		24-Hour Min / Max	16 / 77	16 / 72	25 / 71	/
		Temperature (Acurite)	At Start / Stop (°C)	24 / 24	22 / 23	22 / 19	/
Day 3	2		24-Hour Min / Max	2 / 27	3 / 24	3 1 23	/
Day J	22/21	Relative Humidity	At Start / Stop (%)	29 / 30	26 / 30	36 24 1 42	/
	Date:	(Acurite)	24-Hour Min / Max	20 / 77	72 / 24	27 / 74	/
		Temperature	At Start / Stop (°C)	27 / 30	24 / 27	22 / 23	/
Day 4	20	(Acurite)	24-Hour Min / Max	2 / 30	4 / 31	3 / 26	/
Day 4	12/23	Relative Humidity	At Start / Stop (%)	26 / 16	31 / 25	35 / 27	/
	Date:	(Acurite)	24-Hour Min / Max	(b / 7i	22 / 74	22 / 73	/

Site Operator: 1. DSD raio

Week #: _____ Day: ____

Site		Thermal Fir	Thermal Fire Station 39 Torres Martinez Desert Cahuilla Indians AMS Mecca Fire Station 40										
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) -	TFS (TD) - (7	TM (XAD) -	TM (TD) - 17	MFS (XAD)	17	MFS (TD) -	17	MFS (XAD) - (FB FS CO)	17	MFS (ID) - (FB (FS) CO)) 17
Barcode		\$22122	1009	522122	10 13		\$22122			S221221022			
Tube ID			426675		400451			404	758			4004	153
Sample Start (Date	e, PST)	12 27 22	1022	2 27 22	0944	12/27/22	0916	12/27/22	0918	12/27/22	0910	12/27/22 0	
Sample Stop (Date	e, PST)	12/28/22	1019	12 28 22	0949	12/28/22	0908	12/28/22	0909		0903	12/ 28/22	
ETM (Start / Stop	Hours))	396.4	420.3	348.3	422.4	418.0/441.9 444.3/473.1 1809.5/1833.4 400.6/			424.5				
Flow (Start / Stop	(CCM))	104.2 / 16.6	24.6 / 25.1	99.8 / 99.9	25.2/258	100.1	1 99.3	25.01	23.2	100.1/	95.6	25.11	and the product of the
Temperature (Alicat)	At Start / Stop (°C)	17.20	28.50	15.49	28.20				. 17	/ 19.22			
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	767	261	769	761		;	170 15	hu	1 764			
Relative Humidity	At Start / Stop (%)	55	44	52	35			6	1	1 55			
(Acurite) 24-Hour Min / Max		44 / 50		32 / 35		55 / 58							
Precipitation (At Start / Stop)**		NLMH/NLMH		N L M H / N L M H		NLMH/NLMH							
Wind (At Start / Stop)*** S C M H / S L M		/ SLM H	SLМН,	/ ѕ 🗋 м н	SLМН/SLМН			Н					

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

		12/22/22 - Alexanding Daivas	124 - Rain overnight
Field Notes / Comments	XAD flow to stabilize 12/28/22 - Rain Overnight	12/28/22 - Rain overnight	12/28 - Num overnight 12/28

Flow Meter SN / Barcode(s)	194559
Shipped / Delivered to Lab (Date , PST, Initials)	01/03/23 @ 0900 100
Shipped / Delivered <5° Celsius?	@/ N

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

Site Operator: 1. OSOFNIO

Week #: <u>5</u> Day: <u>2</u>

Site		Thermal Fir	e Station 39	Torres Martinez D	Torres Martinez Desert Cahuilla Indians AMS		Mecca Fire Station 40						
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) -	TFS (TD) -	TM (XAD) -	TM (TD) -	MFS (XAD) -	18	MFS (TD) -		MFS (XAD) - (FB) FS / CO)	18	MFS (TD) -	o) (§
Barcode		S221	22 10 10	522122 1014			5221221018		5221221023				
Tube ID			426660		407418			4260	iti			407	414
Sample Start (Date	e, PST)	12/28/22	1040	12/28/22	0957	12/28/22	0919	12 28/22	0422	18/28/27	0 915	12/28/22	0913
Sample Stop (Date	, PST)	12/24/22	1017	12/29/22	0448	12/29/22	0909	12/24/22		12/29/22	0919		
ETM (Start / Stop (Hours))	420.4	440.0	422.4	1 446.2	441.9 465.7 473.1 496.9		1					
Flow (Start / Stop ((CCM))	100.8/341.5	24.3/26.7	49.4/ 48.	2 25.6 /22.5		97.9		26.2	+			1
Temperature (Alicat)	At Start / Stop (°C)	29.59	18.90	29.50	1 14.56				.13	/ 13.2	i.		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	760	767	760				7	62	1 771			
Relative Humidity	At Start / Stop (%)	39	69	35	/ 77			50 3	162160	1 79			
(Acurite) 24-Hour Min / Max		25	89	27	1 88	27 / 89							
Precipitation (At Start / Stop)**		NLMH,	' 🔃 L M H	NLMH/NLMH		NLMH/NLMH							
Wind (At Start / Sto	op)***	SUMH/SUMH SUMH/SUMH SUMH/SUMH			н								

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		

Flow Meter SN / Barcode(s)	194559
Skipped / Delivered to Lab (Date , PST, Initials)	01/03/23 @ 0900 160
Shipped / Delivered <5° Celsius?	(UN

Y/N

- e · . - r .e.

Site Operator: L. Osornio

Site		Thermal F	ire Station 39	Torres Martinez De	sert Cahuilla Indians AMS Mecca Fire Station 40							
		TFS (XAD) -	TFS (TD) -	TM (XAD) -		hare hunge						
Sample Name (Site	e - # - *P/CO/FS/FB)	IG IG	[[] [G	INT (AD)-	TM (TD) -	MFS (XAD)	10	MFS (TD) -	MFS (XAD) -	N	MFS (TD) -	10
				11	14		19	19	(FB / FS / CC	9 19	(FB/FS/CO	5 19
Barcode		897	221011	00010	1212 10		Dania					
			1221011	JLLI	121015		32212:	21019	5221221024			
Tube ID			426662		11000			110.01		Sugar and provide state	lings	,
			124646		407460			407457			4070	112
Sample Start (Date	e, PST)	1210.1.00	1006	1. 1 · · · ·	1.0							
		12/29/22	1029	12 29/22	6956	12/29/22	6924	12/29/22 0925	12/29/22	0919	12/29/22	0920
Sample Stop (Date	e. PST)	inter al	1040					1 11 - 16.	111-	- 117	1-1-11-02	0920
		12 30 22	1022	13/30/22	0454	2/30/22	0921	12/30/22 0921	12/30/22	CGIC	12/30/22	6416
ETM (Start / Stop	(Hours))	1. No.							110100	• (1)	19/0/22	VIII
(otart) stop		444.1	468.0	446.3	470.2	465.8	489.7	496.91520.9	1833.5	18524	424.5	1448.4
Flow (Start / Stop	(CCM))	the colored	A	and the Allers			10 10 0	114.1 1001		10/10	161.7	11-1
(start) stop		10.0.8/115.2	25.0 / 26.0	101.0 98.3	25.9 22.1	GGL	93.8	24.9 / 24.9	101.8/	62 2	23.9	1 12 11
Temperature	At Start / Star (95)	10				1 10 4	10.0	-101 -101	10110	97.6	62.9	67.7
(Alicat)	At Start / Stop (°C)	19.58	12.66	18.07	16.16			15.63	/ 14.6	8		
Barometric				100 C	to cry			17.07	11.0	0		
Pressure (Alicat)	At Start / Stop (mmHg)	766	1 769	717	1 770			770	1 771			
						An a final state of		110	110	-		
Relative Humidity	At Start / Stop (%)	67	1 73	70	1 78	8		78	1 77			
(Acurite)						-		60	11			
	24-Hour Min / Max	72	1 73	78	1 78			77	1 75			
		0	. ^		~			11				
Precipitation (At Start / Stop)**		N L M H	/ 🔃 L М Н	🛛 🕅 L M H	/ (N) L M H			N L M H	/ (N) L I	ИΗ		
			-	e a					/ U			
Wind (At Start / Stop)*** S L N		S 🗋 M H	/ S(L) M H	S 🗋 М Н	/ S (L) М Н			S L M H	/ SLM	ЛН		
lesson and the second s		U	-	5	V				,	2		

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	12/29 Replace temp lid due to high probability of rain	due to high probability of ruin	12/29 - Place lid on temp bo of run	ox due to high probability
	1	Maricsting bridge		
Flow Meter SN / Barcode(s)	194559			
		-	*For Sacramento Drop Off Only*	
Shipped / Delivered to Lab (Date , PST, Initials)	01/03/23 @ 0400 160		Received By Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	(Y) N		Received <5° Celsius?	Y / N

Week #: <u>5</u> Day: <u>3</u>

1. Osornio Site Operator:

Week #: <u>5</u> Day: <u>4</u>

Site								Week #	t: Day:		
Site			ire Station 39	Torres Martinez Des	ert Cahuilla Indians AMS	Mecca Fire Station 40					
Sample Name (Sit	te - # - *P/CO/FS/FB)	TFS (XAD) - 20	TFS (TD) - 20	TM (XAD) - 20	TM (TD) -	MFS (XAD) - 20	MFS (TD) -	MFS (XAD) -	MFS (TD) -		
Barcode		5221	22 10 12		22 10 16		20	(FB / FS / CO)	(FB / FS / CO)		
Tube ID			426670			JLLIL	2 10 20				
Sample Start (Dat	e, PST)	12/30/22	1041		426656		407451				
Sample Stop (Date	e, PST)	12/3/22	0942	12/80/22	[00]		12/30/22 0429				
ETM (Start / Stop	(Hours))	468.1	4911	12/31/22	0918		12/31/22 0853				
Flow (Start / Stop	(CCM))	104.0 / 57.6	25.9/23.8		/ 493.5	489.7 513.1	1.00	/	/		
Temperature (Alicat)	At Start / Stop (°C)	21.43	/ 13.57	101.0/86.7	25.3/16.6	100.7/90.6	24.4 23.7	1	/		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	767	1 769	12.04	1 12.96		15.28	12.66			
Relative Humidity	At Start / Stop (%)			769	770		771	771			
(Acurite)	24-Hour Min / Max	le 6	<u> </u>	76	92		77	93			
Precipitation (At St		40	92	44	/ 94		<u>44</u>	94			
		NLMH.	MLMH	N L M H	/ NLMH		NLMH/	/ NLMH			
Wind (At Start / Stop)***			<mark>/^{VS} (</mark> М н	S 🜔 М Н	∕ѕ∟мн		SLMH/	SUM H			
ircle Une, If Applicab	ole - Primary, Field Blank (FB), F	ield Spike (FS) Collocated (CC	0)				~	e e			

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

	12/30 - Replace XAD rotumeter Keep lid on Alucite box 12/31 - Dense tog: Prov of 12/20	12/30 - Horresting Onions. Keep lid on Acurite box 12/31 - Dense tog. Rain on	12/30 - Keep lid on Acurita 12/31 - Pense Tog. Rain or	box raight izj30
Flow Meter SN / Barcode(s)	194559	12122. Ag activity @		
Shipped / Delivered to Lab		adjacent firld. Moisture Cend of XAD tube	*For Sacramento Drop Off Only*	
	01/03/23 @ 0900 160	the two two	Received By Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	() N		Received <5° Celsius?	Y/N

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

Week #:	5
---------	---

.

				Thermal Fire Station	Torres Martinez	Mecca Fire Station	
				Unit #_3	Unit #2	Unit #	Unit #
	Day 1		At Start / Stop (°C)	17 / 23	15 / 27	13 / 21	/
Day 1		24-Hour Min / Max	21 / 23	27 / 28	20 / 21	1	
		At Start / Stop (%)	55144	62 / 35	60 / 55	. /	
and farming and		(Acurite)	24-Hour Min / Max	44 1 50	32 / 35	56 / 58	1
	Temperature	At Start / Stop (°C)	25 / 19	26 / 17	23 / 16	1	
Day 2	12/28/22	(Acurite)	24-Hour Min / Max	8 / 28	g / 2g	q / 28	1
	Kei	Relative Humidity (Acurite)	At Start / Stop (%)	39 / 68	35 / 76	50 / 79	1
			24-Hour Min / Max	25 1 89	27 / 88	27 / 89	1
		Temperature (Acurite)	At Start / Stop (°C)	19 / 16	19 / 16	15 / 15	/
Day 3	129/22		24-Hour Min / Max	16 / 17	16 / 16	14 / 15	/
	12	Relative Humidity	At Start / Stop (%)	67 / 73	70 / 78	78 / 77	/
	Date:	(Acurite)	24-Hour Min / Max	72 / 73	78 / 78	77 / 78	/
		Temperature	At Start / Stop (°C)	19 13	14 / 13	11 / 11	/
Day 4	30 122	(Acurite)	24-Hour Min / Max	5 / 26	5 / 25	6 / 24	1
	12/3	Relative Humidity	At Start / Stop (%)	63 / 91	76 / 92	77 / 93	/
	Date:	(Acurite)	24-Hour Min / Max	40 / 92	45 / 64	44 / 94	/

Site Operator: J. D. Le Roma

Week #: 06 Day: 01

Site		Thermal Fi	ire Station 39	Torres Martinez Dese	rt Cahuilla Indians AMS			Station 40	
	- # - *P/CO/FS/FB)			TM (XAD) - 21	TM (TD) - 21	MFS (XAD) - 21	MFS (TD)- 21	MFS (XAD) - (FB / F) / CO) 21	мfs (TD) - (fb / §/ со) 21
Barcode		522122803	0	52212280	34	522122803	1	522122804	2
Fube ID			426677	•	407456		426668		400 454
Sample Start (Date	, PST)	2023/01/03		2023/01/03	1036g	2023/01/03	10019	2023/01/03	1006a
Sample Stop (Date,	PST)	2023/07/04	10441	202/01/04	1 10130	2023/01/04	09329	2023101/04	09312
ETM (Start / Stop (Hours))	491.1	1 514.8	493.6	1 517.1	513.9 1 536-7	544.3 1567.8	1857 1 1880.8	448.4, 471.8
Flow (Start / Stop (CCM))	100.5 / 105.6	25.0125.7	100.3 / 101.3	24.8/28.8	100,9 1 100.7	25.2 124.6	100.6 194.22	24.9/24.6
Temperature (Alicat)	At Start / Stop (°C)	21.20	1 23.18	20.25	, 22.1	21.	88	1 17.70	and an
Beremetric	At Start / Stop (mmHg)	768	1770	766	1770	the strength of the second strength of the	68	1 774	
Relative Humidity	At Start / Stop (%)	36	1 55	34	1 59	36	-	1 65	
(Acurite)	24-Hour Min / Max	23	1 85	32	1 85	31		1 81	
Precipitation (At S	tart / Stop)**	() смн	/ 🕅 L М Н	🕅 L М Н	/ NLMH		Øгмн	/ NLMH	
Wind (At Start / St	op)***	s 🖉 м н	/ ѕ () м н	S () M H	/ 🕄 L М Н		s L M н	/ѕ@мн	

*Circle One, If Applicable - Primary, Field Blank {FB}, Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	Acurile brow set or below brown. Likely below dripped and Acurile was ent.	
Flow Meter SN / Barcode(s)	194557	*For Sacramento Drop Off Only*

Shipped / Delivered to Lab (Date , PST, Initials)	2023/01/09 12450 JD	
Shipped / Delivered <5° Celsius?	(Y) N	

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

Site Operator: J. De La Rama

Week #: 06 Day: 02

		Thermal Fi	e Station 39	Torres Martinez Dese	ert Cahuilla Indians AMS			Station 40	
Site Sample Name (Site	- # - *P/CO/ES/EB)		TFS (TD) - 22	TM (XAD) - 22	TM (TD)- 22	MFS (XAD) - 22		MFS (XAD) - 22 (FB)/FS/CO)	MFS (TD) - FB/FS/CO) 22
Barcode	-#- 1/00/13/10/	522122802		522122803	3	5221228038	and the second	522122804	
Barcode		02 000	and the second	9 000	407411		426669		426652
Tube ID			407452		10FTH		11		
Sample Start (Date,	, PST)	2023/01/04	1048a	2023101/04	10200	2023/01/04	09461	2023/01/04	0936a
Sample Stop (Date,	PST)	2023101/05	11059	2023/01/05	10359	2023/01/05	09499	2023101/04	0946
ETM (Start / Stop (I	Hours))	514.9	1 539.2	517.3	1 541.6	536.71 560.7	567.8 / 591.9	1880.8/ 1880.8	471.8 471.8
Flow (Start / Stop (CCM))	100.7 / 98.2	24.9/23.8	100.9 / 96.9	124.6/22.9	100.1 / 100.3	24.8 / 24.1	and the second	0 / 0
Temperature (Alicat)	At Start / Stop (°C)	24.47	1 21.68	22.77	1 20.11	18.	the second states of the second states and the	1 6.1	
Construction of the second second	At Start / Stop (mmHg)	769	1 767	770	1 767	77	3	/ 771	
	At Start / Stop (%)	50	1 46	56	/ 64	64	and the second	1 70	
(Acurite)	24-Hour Min / Max	45	/ 61	64	1 65	74		/ 74	
Precipitation (At S	tart / Stop)**	О L М Н	/ 🕅 L М Н	NLMH	/ N () М Н		<u>М</u> см н		
Wind (At Start / St	op)***	s () м н	/ ѕОмн	SLMH	/ ѕ() м н		slрмн	/sl@H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments			
		and the second	

Flow Meter SN / Barcode(s)	194557
Shipped / Delivered to Lab (Date , PST, Initials)	2023/01/09 1245p JD
Shipped / Delivered <5° Celsius?	Ø/ N

Y/N

Site Operator: J. De La Rama

Week #: 06 Day: 03

								a	
Site		Thermal Fir	e Station 39	Torres Martinez Dese	ert Cahuilla Indians AMS			Station 40	
	- # - *P/CO/FS/FB)	TFS (XAD) - 23	TFS (TD) - 23	TM (XAD) - 23	TM (TD)- 23	MFS (XAD) - 23		MFS (XAD) - 23	MFS (TD) - (FB / FS / 0 23
Barcode		52212280	28	522122803	2	52212280	37	522122804	0
Tube ID		9	426659		426672		426653		426692
Sample Start (Date,	, PST)	2023/01/05	- 11129	2023/01/0	05 1040 4	2023/01/05	1000a	2023/01/05	1000 9
Sample Stop (Date,	PST)	2023/01/06	11269	2023/01/01	5 1054a	2023/01/05	0009	2023/01/06	0039
ETM (Start / Stop (Hours))	539.3	1 563.5	541.7	1 565.9	560.71584.8	591.9 / 615.9	1 904.8	, 495.9
Flow (Start / Stop (CCM))	99.81 100.0	25.1,24.6	100.8197.0	25.01 24.3	99.51 100.5	25.1/246	99.51101.0	25.0/18.6
Temperature (Alicat)	At Start / Stop (°C)	22.81	/ 22.43	20.17	1 20.30	6	-68	/ 18.71	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	766	1 772	761	1 771	7	-70	1 774	
Relative Humidity	At Start / Stop (%)	43	1 21	65	1 26		59	/ 38	
(Acurite)	24-Hour Min / Max	21	126	26	1 34		10	1 85	
Precipitation (At S	tart / Stop)**	М L М Н	/ 🕅 L М Н	№ () м н	/ 🕅 L М Н		҈®∟мн	/ 🕅 L М Н	
Wind (At Start / St	op)***	s 🗘 м н	/ ѕᢕмн	В Г М Н	/ ѕСм н		SLM (f)	/ѕѼмн	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		

Flow Meter SN / Barcode(s)	194557	
Shipped / Delivered to Lab (Date , PST, Initials)	2023101109	12450 00
Shipped / Delivered <5° Celsius?	e	УN

Y/N

Site Operator: J. De La Rang

Site		Thermal Fi	re Station 39	Torres Martinez Desert			Mecca Fir	e Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD)- 24	TFS (TD) - 24	TM (XAD) - 24	IM (TD)- 24	MFS (XAD) - 24	MFS (TD) - 24	MFS (XAD) - (FB / <u>FS / CO</u>)	MFS (TD) - (FB / F87 CO)
Barcode		522122807	17	52212280	31	5221128	036		
Tube ID			407471		407472		400455		/
Sample Start (Date, PST) 2022/01/06 1130 a 2023/01/06 1100 a 2023/01/06 1		1009a	/	/					
Sample Stop (Date	, PST)	2023/01/0	7 1056 =	2023/01/07	10340	2023/01/07	10000		
ETM (Start / Stop ((Hours))	563.5	1 587.0	565.0 1	589.6	584.91 608.7	616.1/639.9		-
Flow (Start / Stop ((CCM))	100.3/103.8	24.8 124.7	99.91 99.8	24.8,24.9	100.3/95.3	25.0123.1		1
Temperature (Alicat)	At Start / Stop (°C)	22.12	1 22.90	20.82 1	21.68	18.2	.8	/ 16.18	}
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	771	1770	770 1	771	77	4	1 776	
Relative Humidity	At Start / Stop (%)	16	1 27	27 1	31	3	8	1 28	
(Acurite)	24-Hour Min / Max	6	177	24 1	80	2	2	1 62	
Precipitation (At Si	tart / Stop)**	Ю гмн	/ (1) ГМН	ГМН/	ℕгмн		Nсмн	/ NLMH	
Wind (At Start / St	op)***	ѕѼѡн	/ ѕ () м н	s()мн/	SLM H		sОмн	/ ѕ () м н	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

	End plow = 24.9 ccm for TD	
Field Notes / Comments		

Flow Meter SN / Barcode(s)	194557	
Shipped / Delivered to Lab (Date , PST, Initials)	2023/01/09	1245p JD
Shipped / Delivered <5° Celsius?	()	N

Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y/N

. .

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

		or
Week	#:	06

				Thermal Fir				rtinez			Station	11.11.11
				Unit #_	<u> </u>	1	it #			it #	1	Unit #
		Temperature	At Start / Stop (°C)	26 1	24	24	1	21	23	1	16	/
Day 1	(Acurite)	24-Hour Min / Max	10 1	37	۵)	1	27	10	1	26		
	Relative Humidity	At Start / Stop (%)	36 1	55	34	/	28	36	1	65	1	
	Date:	(Acurite)	24-Hour Min / Max	23 1	85	32	1	85	31	1	81	1
		Temperature	At Start / Stop (°C)	25 1	24	21	1	18	18	1	15	1
	(Acu	(Acurite)	24-Hour Min / Max	20 1	25	18	1	19	14	1	15	1
Day 2		Relative Humidity (Acurite)	At Start / Stop (%)	50 1	46	56	1	64	64	1	70	1
Date:	Date:		24-Hour Min / Max	45 1	61	64	1	65	70	1	74	1
		Temperature (Acurite)	At Start / Stop (°C)	24 /	41	18	1	33	15	1	20	/
			24-Hour Min / Max	31 /	41	29	1	34	12	1	23	1
Day 3		Relative Humidity (Acurite)	At Start / Stop (%)	43,	21	65	1	26	69	1	38	/
	Date:		24-Hour Min / Max	21 1	26	26	1	34	38	1	85	1
		Temperature	At Start / Stop (°C)	40 1	25	33	1	26	20	1	22	/
		(Acurite)	24-Hour Min / Max	2 1	40	3	1	33	7	1	26	/
Day 4		Relative Humidity	At Start / Stop (%)	15 1	27	27	1	31	3 8	1	28	1
	Date:	(Acurite)	24-Hour Min / Max	16 1	77	24	1	8.0	22	1	62	1

Site Operator: VACA

Week #:_____ Day:_____

Site		Thermal Fi	re Station 39	Torres Martinez Dese	ert Cahuilla Indians AMS	Mecca Fire Station 40					
Sample Name (Sit	te - # - *P/CO/FS/FB)	TFS (XAD) - 25	TFS (TD) - 25	TM (XAD) - 2-5	TM (TD)- 25	MFS (XAD) - 25	MFS (TD) - 25	MFS (XAD) - (FB/LES) CO) 2 5	MFS (TB) - (FB / FS / CO) Z 3		
Barcode		5230103103/	426685	5230103107	426001	52301031121	407467	52301031151	407466		
Tube ID											
Sample Start (Date	e, PST)	1/9/2023	1141	1/9/2023	1109	1/9/2023	1030	1/9/2023	1030		
Sample Stop (Date	e, PST)	1/10/2023	1120	1/10/2023	1049	1/10/2023	1013	1/10/2023	1011		
ETM (Start / Stop	(Hours))	587.2	1 610,8	. 589,7	1 613,4	609 1632,6	640,11663.7	496,21519.9	1905.11 1928,8		
Flow (Start / Stop	(CCM))	100.61 118,5	24.6 123.4	100.6 1 105.6	24.2127.9	100.3 194.2	25.3 123,4	49.0197.6	25,0123.9		
Temperature (Alicat)	At Start / Stop (*C)	25.7	1 27,8	19.1	123.7		14.1	1 21			
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	14,5	1 14.9	14.9	1 14.6		15	1 14.8			
Relative Humidity	At Start / Stop (%)	42	128	58	138		54	1 54	·.		
(Acurite)	24-Hour Min / Max	2-6121	1. 27001	24	1 60		22	125			
Precipitation (At St	tart / Stop)**	NLMH,	/NLMH	NLM H	/NLMH		NLMH	NLMH			
Wind (At Start / St	op)***	s L м н	/ SLM H	SLMH	/ s() M H		SLM H	/ SLM H			

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		
		3

Flow Meter SN / Barcode(s)

Shipped / Delivered to Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	Y/N

IC	
Y/N	
	Y/N

.

	2		2
Week #:	7	Day:	

Site		Thermal Fir	e Station 39	Torres Martinez Deser	rt Cahuilla Indians AMS	1	Macco File	e Station 40	
Sample Name (Sit	te - # - *P/CO/FS/FB)	TFS (XAD) - 26	TFS (TD) - 26		TM (TD) - 2.6	MFS (XAD) - 26	MFS (TD) - 2.6	MFS (XAD) - (FB / FS / CO) 26	MFS (TD) 26
Barcode		5230103102/	426658	5230103106	1	5230103/11	407468	5230103114/	407453
Tube ID								121010)1141	
Sample Start (Dat	e, PST)	1/10/2023	1130	1/10/2023	1056	1/10/23	1026	1/10/23	1020
Sample Stop (Date	e, PST)	1/11/2023	1130	1/11/2023	1054	1/11/23	1022	1/11/23	1022
ETM (Start / Stop	(Hours))	610,48	634.8	613.4 1		632.6 1656.4	663.7		519.9 1543.8
Flow (Start / Stop	(CCM))	103 193.2	24,7122.2	101.2185.4	25.0 126.5	101.6 193,0	25.0 122.2		23,5 122,1
Temperature (Alicat)	At Start / Stop (°C)	27.8 1	22,2	23.71	21,6			1 19.8	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	14.91	14.9	14.81	14,8		14.9	1 14.9	
Relative Humidity	At Start / Stop (%)	24.01	32.0	26,01	27.0		19.8	123,2	
(Acurite) 24-Hour Min / Max 14 1 46		13 1 38		12123					
Precipitation (At St	tart / Stop)**	(N)LMH/	Юлин	NLMH/	NLMH		NLMH,	N.M.H	
Wind (At Start / Sto	op)***	SLMH/	S L M H	SLMH/	S L M H		SLMH,	/ S L M H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	Bampler fell oven due To WIND STORM TM STAFF put Upright

	Flow Meter SN / Barcode(s)	
1		

	_	*For Sacramento
		Received By Lab (D
Y/N	· ·	Received <5
	Y/N	Y / N -

For Sacramento Drop Off Only		
Received By Lab (Date , PST, Initials)		
Received <5° Celsius?	Y/N	
and the second		

VACA Site Operator:

Week #: <u>7</u> Day: <u>3</u>

Site		Thermal Fir	e Station 39	Torres Martines Dees	- Colouille to diama asan	1				
				Torres Martinez Desert Cahuilla Indians AMS		Mecca Fire Station 40				
Sample Name (Sit	e - # - *P/CO/FS/FB)	TFS (XAD) - 27	TFS (TD) - 2フ	TM (XAD) - 27	TM (TD) - 27	MFS (XAD) - 27	MFS (TD) - 27	MFS (XAD) - 27 (FB / FS / CO) 27	(FB /FS / CO) 27	
Barcode		5230103101/	407413	4230103105	426680	5230103110		5230103113/	407464	
Tube ID				10. Selandad						
Sample Start (Date	e, PST)	1/11/2023	1135	1/11/2023	1104	1/11/23 1032	1/11/23 1032	1/11/23/025	1/11/23 1025	
Sample Stop (Date	, PST)	1/12/2023	1105	1/11/2023	1040	1/12/23 944	1/12/23 944	1/11/23 1030	1/11/23 1030	
ETM (Start / Stop (Hours))	634.8	658,3	637.4	660.9	/ /		1952.8 1952.8	111	
Flow (Start / Stop	(CCM))	101,91117.5	25.3 125.3	100,6199.4	25.5129,8	101.3198.9	25,0124,3	_ 1 _	-1-	
Temperature (Alicat)	At Start / Stop (°C)	18.9	20.2	17.0	16.4		15,6	1 16.7		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	14.8 1	14,8	14,9	1 14.9		14.9	1 14.9		
Relative Humidity	At Start / Stop (%)	22 1	29	32	25		27.63	1 30		
(Acurite) 24-Hour Min / Max		16 1	79	20 1 78		20 1 73			•	
Precipitation (At Start / Stop)**		NLMH/	(N) L M H	NLMH,	NLMH		NLMH	/NLMH		
Wind (At Start / Sto	op)***	SLM H	SLMH	(SIMH)	SLM H		SLM H	SLM H		

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	XAD TUBE FEND BRUKE OFFF When Remoning FROMGAMPIEN	
------------------------	--	--

Flow	Meter	SN /	Barcode(s)	

Shipped / Delivered to Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	Y/N

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y/N

Site Operator: _______

Week #: 7_ Day: ____

Site			e Station 39	Torres Martinez Dese	rt Cahuilla Indians AMS	Mecca Fire Station 40				
Sample Name (Site	e - # - *P/CO/FS/FB}	TFS (XAD) - 28	TFS (TD) - 28	TM (XAD) - 28	тм (TD) - 28	MFS (XAD) - 28	MFS (TD) - 28	MFS (XAD) - (FB / FS / CO) 2 \$	MFS (TD) - (FB / FS / CO) Z 8	
Barcode 5230		92301031001	426681	1230103104	1	52301031031	1			
Tube ID										
Sample Start (Date	≥, PST)	1/12/2023	1105	1/12/2023	1046	1/12/2023	950			
Sample Stop (Date	e, PST)	1/13/2023	1113	1/13/2023	1051	1/13/2023	1018			
ETM (Start / Stop ((Hours))	458.3	682.4	661	685	67.6 1704.1	710,8 1735.2	1	1	
Flow (Start / Stop	(CCM))	100.71101.2	26.1124.9	101 1 13.04	24 12.3	101.4134	25.4 120.5	1	1	
Temperature (Alicat)	At Start / Stop (°C)	15,6	20.9	16.8			1	1 17.2		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	14.9	14.9	14.8	14.9		14.8	1 14.9		
Relative Humidity	At Start / Stop (%)	16	16	27	27	221 16				
(Acurite) 24-Hour Min / Max 16 1 20 2		27	27 1 29 16 1 26							
Precipitation (At Start / Stop)**		NLМН,	NLMH		NLMH,	NLMH				
Wind (At Start / St	op)***	SLMH/	SLMH	SLMH,	SLM H		SLMH,	/ s/L)M H		

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	TD Sample missing, may have burn left at the site, Sample
	In valid.

Flow Meter SN / Barcode(s)

Shipped / Delivered to Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	Y/N

Received By Lab (Date , PST, Initials)		
Received <5° Celsius?	Y/N	

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

Week #:	7

				Thermal Fire Station	Torres Martinez	Mecca Fire Station	
	1			Unit #	Unit #	Unit #	Unit #
		Temperature (Acurite)	At Start / Stop (°C)	22 1 31	20126	16117	16/17
Day 1	123		24-Hour Min / Max	10 1 34	8134	14 1 19	14 1 19
Ĺ	1/9	Relative Humidity (Acurite)	At Start / Stop (%)	42 128	58/38	54 154	54154
	Date:		24-Hour Min / Max	21/01	24 1 80	22 1 76	22 176
	M	Temperature	At Start / Stop (°C)	12 / 14	12/16	10/12	10/12
Day 2	2	(Acurite)	24-Hour Min / Max	12/16	11/17	9 1 14	9114
	1/10	Relative Humidity (Acurite)	At Start / Stop (%)	251 25	34 / 33	25/ 30	23 130
	Date:		24-Hour Min / Max	25127	32 1 35	161 63	10163
	б	Temperature (Acurite)	At Start / Stop (°C)	26 1 24	23/29	21/22	21122
Day 3	N		24-Hour Min / Max	10 1 32	9136	10 130	10/30
	i /	Relative Humidity	At Start / Stop (%)	22 / 26	32 / 25	52 130	52 130
	Date	(Acurite)	24-Hour Min / Max	16 1 79	20178	20 173	20 173
	~	(Acurite)	At Start / Stop (°C)	26 / 26	27/27	24129	24129
Day 4	2/23		24-Hour Min / Max	10 1 28	9128	8 1 24	8124
	1/1	~ Relative Humidity (Acurite)	At Start / Stop (%)	10 / 16	29 127	22/16	28/10
	Date:		24-Hour Min / Max	16 1 20	22 179	16 126	16 126

1. OSOFINIO Site Operator: _

Week #: _____ Day: _____

Site		Thermal Fire Station 39		Torres Martinez Desert Cahuilla Indians AMS		Mecca Fire Station 40			
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 2G	TFS (TD) - 29	TM (XAD) - 29	тм (то) - 2 G	MFS (XAD) - 29	MFS (TD) - 29	MFS (XAD) - (FB / FS)/ CO) 29	MFS (TD) - (FB / FS / CO) 29
Barcode		5230 111001		5230111005		5230111009		5230 11106	
Tube ID			426622		426630		426614		426626
Sample Start (Date, PST)		01/17/23	1026	01/17/23	0955	0918	0919	0907	0909
Sample Stop (Date, PST)		01/18/23	050	01/18 123	1022	0443	01/18/23	0939	0440
ETM (Start / Stop (Hours))		682.4	1 706.8	685.0	/ 709.5	764.2/228.5	1353 17597	1952.8 / 1977.4	543.9 1568.4
Flow (Start / Stop (CCM))		103.1/109.3	24.5/25.4	100,51 93.2	24.8 125.2	100.1 /101.8	24.8 / 24.8	100.5/ 105.2	24.7 / 23.6
Temperature (Alicat)	At Start / Stop (°C)	22.65 / 26.56		19.91 20.89		19.82 / 14.78			
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	761 / 769		762 / 771		763 / 774			
Relative Humidity (Acurite)	At Start / Stop (%)	37 / 16		31	/ 33		35	/ 36	
	24-Hour Min / Max	16 / 32		33	33 / 37 34 / 41		/ 41		
Precipitation (At Start / Stop)**		🔊 L М Н	/NLMH	NLMH/NLMH		NLMH/NLMH			
Wind (At Start / Stop)***		S L M H	/ S L M H	s 🛈 м н	/ ѕ 🕻 м н		S LM H	/ S L 🕅 H	
*Circle One, If Applica	ble - Primary, Field Blank (FB),	Field Spike (FS) Collocated (C	0)				1600		

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	- Activite cover on	- Activity Cover On	- Allerte lover + für bri		
		- Ol/ 18 : Ag uctivity in hearly			
Flow Meter SN / Barcode(s)	194559	ti ei a			
\bigcirc		_	*For Sacramento Drop Off Only*		
Shipped / Delivered to Lab (Date , PST, Initials)	01/23/23 @ 1100 160		Received By Lab (Date , PST, Initials)		
Shipped Delivered <5° Celsius?	N N		Received <5° Celsius?	Y / N	

Site Operator: 1. OS Ornio

Week #: _____ Day: _____

Site		Thermal Fire Station 39		Torres Martinez Desert Cahuilla Indians AMS		Mecca Fire Station 40			
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 50	TFS (TD) - 30	TM (XAD) - 30	TM (TD) -	MFS (XAD) -	MFS (TD) - 30	MFS (XAD) - (FB / FS (CO) 30	MFS (TD) - (FB / FS / (O) 3 D
Barcode		S231	0111002	\$230111006		S230	111010	\$230111015	
Tube ID			426621		426624		426619		426617
Sample Start (Date	e, PST)	0418/23	1058	01/18/23	1030	0457	0958	0952	0953
Sample Stop (Date, PST)		01/19/23	1017	01/19/23	0947	0403	0408	0404	0404
ETM (Start / Stop (Hours))		706.9	730.2	709.5	/ 732.8	128.6/751.7	759.7 782.9	1977.4 12000.4	568.4 1591.6
Flow (Start / Stop ((CCM))	100.3/ 96.1	25.3 / 25.0	99.3 / 96.9	5 25.3 / 24.9	101.4 197.7	25.0 / 24.0	99.9 100.4	25.4 123.6
Temperature (Alicat)	At Start / Stop (°C)	27.56	22.42	25.80 / 20.93		20.54 / 14-11			
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	768 1	768	769	/ 770		772	1 774	
Relative Humidity	At Start / Stop (%)	16	32	29	/ 40		38	/ 36	
(Acurite)	24-Hour Min / Max	16	80	16	/ 82		16	66	
Precipitation (At Start / Stop)**		NLMH/	′ 🕅 L М Н	🔍 L М Н	/ 🔊 L М Н		🕂 LМН,	/ Ŋ L M H	
Wind (At Start / Stop)***		SLMH/	́ SL M H	sЦмн	/ ѕСмн		SLMH,	SLMH	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	y in adj field - lid on boy
------------------------	-----------------------------

Flow Meter SN / Barcode(s)	194559			
		-	*For Sacramento Drop Off Only*	
Shipped / Delivered to Lab (Date , PST, Initials)	01/23/23 @1100 160	8	Received By Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	(Y)N		Received <5° Celsius?	Y / N

Site Operator: 1. OSO (nio

Week #: _____ Day: ____3

Site		Thermal Fire Station 39		Torres Martinez Desert Cahuilla Indians AMS		Mecca Fire Station 40			
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 3 (TFS (TD) - 31	TM (XAD) - 31	TM (TD) - 31	MFS (XAD) - 31	MFS (TD) - 31	MFS (XAD) - (FB) FS / CO) 31	MFS (TD) - (FB) FS / CO) 31
Barcode		5230	111 0 0 3	8230 111 007		\$230111011		8230111014	
Tube ID			426428		426625		426616		426620
Sample Start (Date, PST)		01/10/23	1023	01/19/23	0 956	0418	0414	0913 61/19/23	0914
Sample Stop (Date, PST)		01/20/23	10 0 8	01/20/22	0939	01/20/23	01/20/23	0918	0419
ETM (Start / Stop (Hours))		730.2	753.9	732.8	1 756.5	151.8 / 775.5			
Flow (Start / Stop	(CCM))	99.0/102.5	25.0 / 25.1	101.0/ 45.3	25.1 / 24.5	100.0198.0	24.5 / 23.1	1	
Temperature (Alicat)	At Start / Stop (°C)	25.15	24.44	23.31	1 19.05		19.67	12.37	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	768	171	768	1 773		771	1 778	
Relative Humidity	At Start / Stop (%)	33	25	36	1 23		40	/ 16	
(Acurite)	24-Hour Min / Max	16	70.	16	1 75		16	62	
Precipitation (At Start / Stop)**		<mark>N</mark> LМН,	/ 🔊 L М Н	🕅 см н	/ 🔊 L М Н		NLMH.	/NLMH	
Wind (At Start / Stop)***		SLMH,	∕ SJLM H	s 🗗 М Н	/ ѕ 🜔 м н		SІМН	/ ѕ 🗋 м н	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		ON/19 - Strong Oxion Sman		
		Cilzo - Aq activity in adi	а С	
Flow Meter SN / Barcode(s)	194559	わっし		
			For Sacramento Drop Off Only	
Shipped / Delivered to Lab (Date , PST, Initials)	01/23/23 (0 1100 (600		Received By Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	<u>()</u> /N		Received <5° Celsius?	Y / N

1. Osornia Site Operator:

Week #: ______ Day: _____

Site		Thermal Fi	re Station 39	Torres Martinez Des	sert Cahuilla Indians AMS				
Sample Name (Sit	te - # - *P/CO/FS/FB)	TFS (XAD) - 32	TFS (TD) -	TM (XAD) -	TM (TD) -	MFS (XAD) -	MFS (TD) -	re Station 40 MFS (XAD) -	MFS (TD) -
			32	32	32	32	32	(FB / FS / CO)	(FB / FS / CO)
Barcode		5231	111004	S23	30111008	\$23	0111012		
Tube ID			426629		426623		400456		
Sample Start (Dat	e, PST)	01/20/23	1016	01/20/23	OGUS	0914	0915		
Sample Stop (Date, PST)		01/21/23	0948	01/21/23	6924	0855	0856		
ETM (Start / Stop (Hours))		753.9	477.5	756.5	1 780.2	775.61799.3	801.7/830.4	1	/
Flow (Start / Stop	(CCM))	102.1 / 100.8	24.8 124.7	100.295.1	25.2 / 24.3	100.5/98.5	25.3 / 24.6	1	1
Temperature (Alicat)	At Start / Stop (°C)	26.43	17.37	24.22	1 16.62		13.91	/ 9.76	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	770	777	771	1 778		776	/ 782	
Relative Humidity	At Start / Stop (%)	22 /	30	21	/ 36		ال	/ 29	
(Acurite)	24-Hour Min / Max	6	56	16	/ 58		lv.	/ 51	
Precipitation (At Start / Stop)**		NLMH/	N LМН	NГМН	/ 🔊 L М Н		NLMH,	/ <u>N</u> L M H	
Wind (At Start / Stop)***		s ГМН/	s 🕞 м н	s 🗂 м н	/ ѕСмн		SLMН,	/ s DM H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

|--|

	194559		
Chinesed & Darlinson Land		*For Sacramento Drop Off Only	
Shipped) Delivered to Lab (Date , PST, Initials)	01/23/23 @ 1100 160	Received By Lab (Date , PST, Initia	ls)
Shipped / Delivered <5° Celsius?	(Y/N	Received <5° Celsius?	Y / N

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

							Week #.
				Thermal Fire Station	Torres Martinez	Mecca Fire Station	
				Unit #	Unit #	Unit #	Unit #
		Temperature	At Start / Stop (°C)	16 / 25	24 / 27	19 / 16	1
Day 1	01/17/23	(Acurite)	24-Hour Min / Max	23 / 26	23 / 27	15 / 18	/
		inclusive mannancy	At Start / Stop (%)	37 / 16	31 / 32	35 / 36	/
	Date:	(Acurite)	24-Hour Min / Max	16 / 32	32 / 37	૩૫ / ૫	1
		Temperature	At Start / Stop (°C)	23 / 21	26 / 19	15 / 14	/
Day 2	5/23	(Acurite)	24-Hour Min / Max	- 2 / 28	0 / 31	4 / 25	· · · / ·
	151/10	Relative Humidity	At Start / Stop (%)	16 / 32	29 / 40	38 / 36	/
	Date:	(Acurite)	24-Hour Min / Max	16 / 80	16 / 82	16 / 66	/
		Temperature	At Start / Stop (°C)	22 / 21	21 / 23	(4 / 14	/
Day 3	01/19/23	(Acurite)	24-Hour Min / Max	5 / 27	3 / 30	7 / 22	/
			At Start / Stop (%)	33 / 25	36 / 23	40 / 14	/
	Date:	(Acurite)	24-Hour Min / Max	le / 70	16 / 75	16 / Gz	
	3	Temperature	At Start / Stop (°C)	22 / 18	22 / 20	19 / 17	/
Day 4	20 2	(Acurite)	24-Hour Min / Max	-1 / 37	6 / 30	3 / 25	1
	01	Relative Humidity	At Start / Stop (%)	22 / 30	21 / 426 36	16 / 29	/
	Date:	(Acurite)	24-Hour Min / Max	16 / 56	16 528 47 58	615	/

Week #: _______

ECV Pesticide Rev.: 12/19/22 Site Operator: ____ De La Rama

California Air Resources Board Field Data Sheet Eastern Coachella Valley Pesticide Monitoring

			0	-	+ Cabuilla Indiana ANAC	manual spaces around some accords the solar	Macca Fire	e Station 40	
Site		Thermal Fire			t Cahuilla Indians AMS				MES (TD)
Sample Name (Site	- # - *P/CO/FS/FB)	TFS (XAD) - 33	TFS (TD) - 33	TM (XAD) - 33	™ ^{(TD)-} 33	MFS (XAD) - 33	MFS (TD) - 33	MFS (XAD) - (FB (FS/CO) 33	MFS (TD) - (FB (FS) CO) 33
Barcode		5230123010		523012301	ł	523012301	9	5230123020	
Tube ID			426611		426661		426615		426667
Sample Start (Date	, PST)	2023/01/26	10490	2023/01/26	1025a	2023/01/26	0955a	2023/01/25	0955a
Sample Stop (Date	, PST)	2023/01/27	1119a	2023/01/21	10499	2023/01/27	100 Sa	2023/01/25	10089
ETM (Start / Stop (Hours))		777.5	802.0	780.2	804.6	799.31823.5	830.41854.6	2000.7 12024-8	591.71615.8
Flow (Start / Stop	(CCM))	100.4/105.1	25.2/26.6	100.1/97.4	25.2130.0	100.0/99.3	25.2 125.1	100.2/103.1	24.9 124.5
Temperature (Alicat)	At Start / Stop (°C)	22.51	27.12	23.02	1 22.71	20.	44	1 24-7	2
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	777	768	776	/ 770	7	78	1 771	
Relative Humidity	At Start / Stop (%)	15	1 16	16	/ 16		16	1 15	
(Acurite)	24-Hour Min / Max	16	/ 20	15	1 22		16	1 22	
Precipitation (At Start / Stop)**		Ŋсмн	/ NLMH	NLМН	/ NLMH		М LМН	/ (N L M H	
Wind (At Start / Stop)***		sÛмн	/ SLMH	SLM H	/ S L M H		sьМн	/ s () м н	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	Padloch cover missing. Not fond. Accorth enclosur lid lept off for week Call sites). Storage broket lid flew off. Recovered.
------------------------	---

Flow Meter SN / Barcode(s)	194557
Shipped / Delivered to Lab (Date , PST, Initials)	2023/01/30 1300 F JO
Shipped / Delivered <5° Celsius?	(9/N

For Sacramento Drop Off Only	k
--------------------------------	---

Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

Site Operator: J. De La Rama

Week #: 09 Day: 02

Site		Thermal Fir	e Station 39	Torres Martinez Dese	ert Cahuilla Indians AMS	Mecca Fire Station 40				
Sample Name (Site - # - *P/CO/FS/FB)		TFS (XAD) - 34	TFS (TD) - 34	TM (XAD) - 34	TM (TD) - 34	MFS (XAD) - 34	MFS (TD) - 34	MFS (XAD) - (FB/FS/CO) 34	MFS (TD) - (FB / FS / CO) 34	
Barcode		5230123009		5230123013		52301230			5230123021	
Tube ID			407454		407417		425612		400458	
Sample Start (Date	, PST)	2023/01/27	123a	2023/01/2	7 1051a	2023/01/27	1014a	2023/01/27	10140	
Sample Stop (Date, PST)		2023/01/28	10239	2023/01/2	09524	2023/01/28	0915a	2023/01/27	10199	
ETM (Start / Stop (Hours))	802,1	825.1	804.7	1 827.7	823.67846.7 854.71877.8 2024.812024.8 615.81		615-8/615.8		
Flow (Start / Stop (CCM))	100.2 / 103.1	24.9 124-2	100.4195.5	25.0126.0	99.9 / 92.3	25.1 122.2	0 / 0	0 / 0	
Temperature (Alicat)	At Start / Stop (°C)	26.84	21.53	23.16	1 18.52	24	.77	1 14.9	56	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	768	765	770	1 766	7	71	1 77	Ω	
Relative Humidity	At Start / Stop (%)	16	29	15	1 32	1	.6	1 35		
(Acurite)	24-Hour Min / Max	16	74	15	/ 68	16		1 68		
Precipitation (At Start / Stop)**		N L M H	/ NLMH	MLMH	/ NLMH		N L M H	/ 1) смн		
Wind (At Start / St	ind (At Start / Stop)*** (SLMH/SLMH SOMH/SOMH SOMH/SOMH		/ \$ L M H							

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	Field Notes / Comments			
------------------------	------------------------	--	--	--

Flow Meter SN / Barcode(s)	194557
Shipped / Delivered to Lab (Date , PST, Initials)	2023/01/30 1700 0 00
Shipped / Delivered <5° Celsius?	(Y/ N

For	Sacramento	Drop	Off Only
------	------------	------	-----------

Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

Site Operator: J. De La Rama

California Air Resources Board Field Data Sheet Eastern Coachella Valley Pesticide Monitoring

Week #: 09 Day: 03

Site		Thermal Fire	e Station 39	Torres Martinez D	esert Cahuilla Indians AMS	T	Mecca Fire	e Station 40	WARDER WARD AND AND AND AND AND AND AND AND AND AN
Sample Name (Site	- # - *P/CO/FS/FB)	TFS (XAD) - 35	TFS (TD) - 35	TM (XAD) - 35	5 ^{TM (TD)-} 35	MFS (XAD) - 35	MFS (TD) - 35	MFS (XAD) - 35 (FB / FS / CO) 35	MFS (TD) - (FB / FS / 🔘 35
Barcode		523012300	8	5230123	on	5230123017 5230123022		22	
Tube ID			426657		426603		425527		426663
Sample Start (Date, PST)		2023/01/28	10259	2023/01/7	28 0955a	2023/01/28	0918.	2023101128	
Sample Stop (Date, PST)		2023101120	1 10150	2023/011	27 09499	2023/01/29	09149	2023/01/29	0914a
ETM (Start / Stop (Hours))		825.1	848.1	827.7	1 851.6	846.71870.6	877.81901.7	2025.812048.9	615.9/639.9
Flow (Start / Stop (CCM))		100.0199.1	25.0 127.1	99.8 / 93.	8 25.0/24.8	100.0 1 95.9	25.0124.9	99.8 193.7	24.8 125.0
Temperature (Alicat)	At Start / Stop (°C)	21.12	22.92	18-81	1 20.25	4	.72	1 16.4	4
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	766	762	765	1 762	76	9	1 766	
Relative Humidity	At Start / Stop (%)	21	35	31	1 45	3	8	1 47	
(Acurite)	24-Hour Min / Max	16	84	16	178	2	22	1 75	
Precipitation (At Start / Stop)**		()) смн,	И 🕅 СМ Н	NLMH	н / <u>(</u> 1) L М Н		(N) L M H	/ NLMH	
Wind (At Start / Stop)***		(§LМН,	′s © M H	SLMH	н / s (L) м н		<i>(</i> 9 L M H	/ (\$ L М Н	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		

Flow Meter SN / Barcode(s)	194557
Shipped / Delivered to Lab (Date , PST, Initials)	2023/01/30 1300, 70
Shipped / Delivered <5° Celsius?	()/ N

For Sacramento Drop Off Only

Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

Site Operator: J. De La Rang

Week #: 09 Day: 04

Site		Thermal Fir	e Station 39	Torres Martinez Des	ert Cahuilla Indians AMS				
Sample Name (Site - # - *P/CO/FS/FB)		TFS (XAD) - 36	TFS (TD) - 36	TM (XAD) - 36	тм (то) - 36	MFS (XAD) - 36	MFS (TD) - 36	MFS (XAD) - (F B/FS/C O) 36	MFS (TD) - 36 (FB/FS/EQ) 36
Barcode		5230123007		5230123011		52301230	5230123016		
Tube ID			407474		407455		426618		
Sample Start (Date, PST)		2023/01129	10170	2023101/29	Ogsla	2023/01/29	0919a		
Sample Stop (Date, PST)		2023/01/30	1017 9	2023/01/30	09519	2023/01/30	09199	/	
ETM (Start / Stop (Hours))		849.0	1 873.0	851.7	1 875.7	870.7 1894.7	910.8 1925.	8 /1	/
Flow (Start / Stop (CCM))	100.5199.8	25.0/25.1	99.9 / 101.1	25.1124.7	100.2 / 100.8	24.9 124.6		/
Temperature (Alicat)	At Start / Stop (°C)	21.05	1 19.55	19.75	1 17.62	18	.60	1 14.	90
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	761	1765	763	1765	76	-4	1 770	R
Relative Humidity	At Start / Stop (%)	34	1 36	43	1 48	4	6	1 5	5
(Acurite)	24-Hour Min / Max	16	1 79	22	1 76	2	15	1 7	3
Precipitation (At Start / Stop)**		ŴLМН	/ (1) ІМН	🕅 смн	/ 🕅 L М Н		()) смн	/ 🕅 L М Н	
Wind (At Start / Stop)***		ѕῶмн	/ §) L М Н	S () М Н	/ រ្ខា្រា អ	(S) L М Н / S (D) М Н			

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		

Flow Meter SN / Barcode(s)	194557
Shipped / Delivered to Lab (Date , PST, Initials)	2023/01/3. 13000 00
Shipped / Delivered <5° Celsius?	()/ N

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

				Thermal Fire Station	Torres Martinez	Mecca Fire Station	
				Unit #	Unit #	Unit # <u>4</u>	Unit #
		Temperature	At Start / Stop (°C)	26 127	24 / 28	21 122	/
Day 1		(Acurite)	24-Hour Min / Max	27 128	25 128	21 1 22	. 1
		Relative Humidity	At Start / Stop (%)	16 / 16	15 / 16	151 15	/
	Date:	(Acurite)	24-Hour Min / Max	15 1 20	16 / 22	15 1 22	1
		Temperature	At Start / Stop (°C)	27 125	28 / 22	20 / 18	/
Day 2		(Acurite)	24-Hour Min / Max	8 / 31	2 1 30	2 1 23	1
		Relative Humidity (Acurite)	At Start / Stop (%)	15 / 29	15 / 32	16 135	1
	Date:		24-Hour Min / Max	16 1 74	16 1.68	16 / 68	1
		Temperature (Acurite)	At Start / Stop (°C)	24 , 22	23 / 21	17 / 15	/
Day 3			24-Hour Min / Max	1 , 34	2 1 29	3 / 22	1
		Relative Humidity	At Start / Stop (%)	29 / 35	31 / 45	38 / 47	/
	Date:	(Acurite)	24-Hour Min / Max	15 , 84	16 178	22 , 75	1
		Temperature	At Start / Stop (°C)	23 / 18	21 / 17	15 / 12	/
David		(Acurite)	24-Hour Min / Max	2 1 29	4,29	5 1 25	1
Day 4	4	Relative Humidity	At Start / Stop (%)	34 / 36	43,48	47 / 55	1
	Date:	(Acurite)	24-Hour Min / Max	15 1 79	22 , 76	25 1 73	1

Week #: <u>0</u>9

Week #: 10 Day: 1

Site		Thermal Fi	e Station 39	Torres Martinez Dese	rt Cahuilla Indians AMS		Mecca Fire	e Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD)- 37	TFS (TD) - 37	TM (XAD) - 37	™ ^{(TD)-} 37	MFS (XAD) - 37	MFS (TD) - 37	MFS (XAD) - 37	MFS (TD) - (FB / FS (CO) 37
Barcode		S2301250	49	S230125	053	S23012	5057	\$230125	
Tube ID			426654		407412		426671		407414
Sample Start (Date	e, PST)	1131/23	12 47	1131123	12:18	1131/23 11:24	1/31/23 11:26	1/31/23 11:35	1/31/23 11:37
Sample Stop (Date	e, PST)	211123	12:11	2/1123	11:33	2/1/23 10:32	2/1/23 10:33	211/23 10:39	2/1/23 10:41
ETM (Start / Stop ((Hours))	873	896.4	876 B	899	894.7/917.9	925.8/948.9	2048.9/ 2072	639.9/663
Flow (Start / Stop	(CCM))	100.9 / 109.9	25.4 / 25.8	100.7/108.3	25.2 / 29.7	100.5/103.1	25.3/25.1	100.7/107.8	25.4/25.2
Temperature (Alicat)	At Start / Stop (°C)	24.43	25.3	25.3	24.07		20.6	1 21.0	24
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	766	768	766	768	-	769	1 76	5
Relative Humidity	At Start / Stop (%)	16	16	16	16		16	/ 16	
(Acurite)	24-Hour Min / Max	16	22	16	30		16	1 25	
Precipitation (At S	tart / Stop)**	ℕ∟мн	/NLMH	(NLМН,	/ NLMH		NLM H	/NLMH	
Wind (At Start / St	op}***	SLM H	/ s() м н	sСмн	/ S(L)M H		SLMH	/ S(L)M H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	Acurite enclosure lids left off whole week (all sittes).
------------------------	---

Flow Meter SN / Barcode(s)	153013
Shipped / Delivered to Lab (Date , PST, Initials)	216/23 9:52 (2)
Shipped / pelivered <5° Celsius?	(Y)/ N

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y/N

site Operator: K. AGUILEPA

Week #: 10 Day: 2

Site		Thermal Fi	ire Station 39	Torres Martinez Des	ert Cahuilla Indians AMS				Mecca Fire	e Station 40			
Sample Name (Sit	:e - # - *P/CO/FS/FB)	TFS (XAD) - 38	TFS (TD)- 38	TM (XAD) - 38	TM (TD) - 38	MFS (XAD) -	38	MFS (TD) -	38	MFS (XAD) - (FB FS CO	38	MFS (TD) - (FB /FS) CO	38
Barcode .		S23012	5050	S23012	5054	S23	012	5058	,	S23	3012	5064	1
Tube ID			426655		407451			400	451			4004	155
Sample Start (Dat	e, PST)	2/1/23 1	2:23	2/1/23	11:41	2/1/23	10:49	211/23	10:53	2/1/23	11:04	2/1/23	11:02
Sample Stop (Date	e, PST)	212123	11:35	212123	10:53	212/23	9:57	212123	6 10:00	212123	10:13	2/2/23	10:10
ETM (Start / Stop	(Hours)}	896.5	1919.7	899	1922.3	917.9 /	941	949	972.1	2072 /	2095.2	6631	(86.2
Flow (Start / Stop	(CCM))	100.5 / 98.6	24.9 / 24.8	100.3 / 100.1	25.2/24.6	100.1 /	114-1	25.3	28.9	100.9/	102.6	25.1/	24.1
Temperature (Alicat)	At Start / Stop (°C)	25.7	1 24.3	24.37	1 23.37		21.	67		/	18.5	5	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	768	1 773	768	1 774			-69		1	77	7	
Relative Humidity	At Start / Stop (%)	16	/ 16	16	/ 16			16		/	16		
(Acurite)	24-Hour Min / Max	16	/ 50	16	1 44		A State	16		1	45	il and	
Precipitation (At S	itart / Stop)**	()) L M H	/NLMH	N L M H	/ℕ∟мн			NL	ΜΗ	/ (N) L I	ИН		
Wind (At Start / Si	top)***	s (L) м н	/SLMH	SLM H	/ SLM H			S (Ĺ)м н	SL N	ЛН		

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

	-onion smell 212	
Field Notes / Comments		

Flow Meter SN / Barcode(s)	153013
Shipped / Celivered to Lab (Date , PST, Initials)	216123 9:52 R
Shipped Delivered <5° Celsius?	(Y) N

Y/N	_
	Y/N

Site Operator: K. AGUILERA

Week #: 10 Day: 3

Site		Therma	al Fire Station 39		Torres Mai	tinez Deseri	t Cahuilla Indian	s AMS				Mecca Fir	e Station 40)		
Sample Name (Sit	e - # - *P/CO/FS/FB}	TFS (XAD) - 39	TFS (TD) -	39	TM (XAD) -	39	тм (TD) - З	9	MFS (XAD)	39	MFS (TD) -	39	MFS (XAD)	o) 39	MFS (TD) -	J 39
Barcode		S23012	5051	5 B	S230	01250	55		5230	230125059 523012500		062				
Tube ID			4266		in the set		40745	8			407	418		-	4074	120
Sample Start (Date	2, PST)	2/2/23	11:48		2/2/23	11	:03		212/23	10:16	212/23	10:19	2/2/23	10:23	2/2/23	10:24
Sample Stop (Date	e, PST)	213123	11:08		213/23	1	0:26	-3.4	213/23	9:38	2/3/23	9:40	2/3/23	9:46	2/3/23	9:47-
ETM (Start / Stop ((Hours))	919.8	943	1	922	.3 /	945.=	₽	941.1/964.4 972.1/995.5 2095.2 /2095.2		686.2	686.2				
Flow (Start / Stop	(CCM))	99.9/89	9 25.21	21.5	100.2/	98.5	25 12	4.1	100.5	98.2	25.3	125.1	-	/ —	-	, —
Temperature (Alicat)	At Start / Stop (°C)	24.27	- 1 22.5	3	24.	1 /	19.Z			19			/ \	8.79		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	774	176	8	77	-4 1	77:	2		77	-6		1 -	774	4-1 (Å	
Relative Humidity	At Start / Stop (%)	16	/ 16		16	, /	30			10	ρ		/	33		
(Acurite)	24-Hour Min / Max	16	1 5=	t	16	, /	51				16		1	51		
Precipitation (At S	tart / Stop)**	N L M I	Η / (N) L N	1 H		мн/	∭L М	Н			Ŵι	ΜН	/ N L	мн		
Wind (At Start / St	op)***	SLM I	+ / s L M	ΙН	sL	мн/	s(L) M	Н			Gι	мн	/ s L	мн		

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (5), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		- Ohion smell 212		•
Flow Meter SN / Barcode(s)	153013]		7
Shipped Delivered to Lab (Date , PST, Initials)	216123 9:52		*For Sacramento Drop Off Only* Received By Lab (Date , PST, Initials)	<u> </u>
Shipped Delivered S" Celsius?	(Y) N		Received <5° Celsius?	Y/N

Y/N

Site Operator: K. AGUILERA

Week #: 10 Day: 4

Site		Therm	al Fire Station 39	Torres Martinez D	esert Cahuilla Indians AMS				Mecca Fin	e Station 40	
Sample Name (Site - # - *P/CO/FS/FB)		TFS (XAD) - 40	TFS (TD) - 40	тм (XAD) - 40	TM (TD) - 40	MFS (XAD)	40	MFS (TD) -	40	(FB) ES / CO)	MFS (TD) - (FB / FS / CO)
Barcode	10	523012	.5052	S230125056		523	\$230125060				
l'ube ID		e ten i	407416		426672			426	\$75		
Sample Start (Date	e, PST)	213123	11:21	2/3/23	10:39	2/3/23	9:54	213123	9:57		
Sample Stop (Date	, PST)	2/4/23	10:28	2/4/23	9:49	2/4/23	9:18	2/4/23	9:19		
ETM (Start / Stop (Hours))	943.2	966.3	945.7	1968.9	૧૯મ.મ	987.8	995.5	1018.9	1	X
Flow (Start / Stop ((CCM))	100.41 8	8.6 25.31 23.2	100.5 193.	1 25.2. 22.10	100.2	100-50	25.2	125.2	0 /	1
Temperature (Alicat)	At Start / Stop (°C)	22.8	5 / 19.1	20.82	- 20.41		15	6.82		/ 20.1	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	768	1769	770	1 768		7	73		1 770	0
Relative Humidity	At Start / Stop (%)	16	/ 16	27	1 28		-	27		/ 32	
(Acurite)	24-Hour Min / Max	16	1 59	16	1 58			16		/ 51	
Precipitation (At St	art / Stop)**	NLM	н∕∖імн	🔊 смн	/NLMH			N L	мн	/NLMH	
Wind (At Start / St	o p)* **	s (1) м	H/SLMH	sОмн	SLMH			SL)м н	SLM H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments			

Flow Meter SN / Barcode(s)	153013	
Shipped //Delivered to Lab (Date , PST, Initials)	2623	9:52 P
Shipped Delivered 5" Celsius?	(Y/N

For Sacramento Drop Off Only						
Y/N						
•	Y/N					

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

Week	#:	_ \	0

	The last		and the second second	Thermal Fire Station	Torres Martinez	Mecca Fire Station	
				Unit #_ 3	Unit #	Unit #	Unit #
	0	Temperature	At Start / Stop (°C)	25 / 28	26/28	19/20	/
Day 1	2	(Acurite)	24-Hour Min / Max	9 / 28	7 / 29	9 1 22	/
,	181	Relative Humidity	At Start / Stop (%)	16/16	16/16	16/16	/
	(Acurite)	24-Hour Min / Max	16 / 22	16 / 30	16 / 25	1	
	53	Temperature	At Start / Stop (°C)	27/30	28 / 30	22 / 22	1
Day 2	21	(Acurite)	24-Hour Min / Max	0 / 31	2 / 30	2 / 26	1
	2	Relative Humidity	At Start / Stop (%)	16 / 16	16 / 16	16/16	/
	Date:		24-Hour Min / Max	16 / 50	16 / 44	16 / 45	1
	3	Temperature	At Start / Stop (°C)	30 / 25	30 / 24	24/16	1
Day 3	212	(Acurite)	24-Hour Min / Max	3 / 30	5 / 31	4 / 25	1
	5	Relative Humidity	At Start / Stop (%)	16 / 16	16 / 30	16 / 33	1
	Date:	(Acurite)	24-Hour Min / Max	16 / 57	16 / 51	16 / 51	1
	6	Temperature	At Start / Stop (°C)	24 / 25	26 / 23	18/18	1
Day 4	312	(Acurite)	24-Hour Min / Max	0 / 35	3 1 33	3 / 27	. / .
	5	Relative Humidity	At Start / Stop (%)	16/16	27 / 28	25 / 32	Ì
	Date:	(Acurite)	24-Hour Min / Max	16 / 59	16 / 58	16 / 51	/

1. Osornio Site Operator:

Week #: _____ Day: _____

Site		Thermal Fi	e Station 39	Torres Martinez Des	ert Cahuilla Indians AMS		Mecca Fire	e Station 40		
Sample Name (Site	Sample Name (Site - # - *P/CO/FS/FB)		TFS (TD) - 41	тм (хар) - Ч	TM (TD) - (11	MFS (XAD) -	MFS (TD) - (/)	MFS (XAD) - (FB / FS/ CO) 41	MFS (TD) - (FB / FS/ CO) (1)	
Barcode		523020	1046	J23	0201050	523021	01051	5230201061		
Tube ID			426677		407452		126652		40054	
Sample Start (Date	e, PST)	02/01/23	1037	02/00/23	1014	0949	0447	0940	09142	
Sample Stop (Date	e, PST)	62 07 23	1025	02 07 23	0948	0905	0406	0901	0902	
ETM (Start / Stop ((Hours))	966.3	990.1	968.9	1 992.5	987.9/1011.1	1018-9 / 1042.2	2095.2/2118.6		
Flow (Start / Stop (CCM))		101.5/103.9	24.5 / 32.7	100.6/107.8	25.6/27.2	100.6/102.6	24.8 / 24.7	100.1/105.8	25.3 125.1	
Temperature (Alicat)	At Start / Stop (°C)	25.47	30.62	25.40	1 25.43		22.91	/ 19.73		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	769	773	768	/ 773		770	1 776		
Relative Humidity	At Start / Stop (%)	16	16	16	/ 16		6	/ 16		
(Acurite)	24-Hour Min / Max	V	/ 39	١Ļ	/ 35		16	/ 32		
Precipitation (At Start / Stop)**		<u></u> NLМН,	/NLMH	<u>р</u> гмн	/ 🕅 L М Н		NLМН,	/ 🔊 L M H		
Wind (At Start / Sto	op)***	SLM Ð,	/ s 🜔 м н	s l 🕅 h	/SLMH		s L 🕅 (н),	/ s 🗋 м н		
*Circle One, If Applicat	ole - Primary, Field Blank (FB), F	Field Spike (FS) Collocated (CO)				160			

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		02/06 - Activity In Odj Og fiold 02/07 - Activity In adj Og		
Flow Meter SN / Barcode(s)	1445 54	field. Citros trees added to monitoring enclosure		
Shipped / Delivered to Lab (Date , PST, Initials)	02/12/23 @ 1100 160	j	Received By Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	(Y) N		Received <5° Celsius?	Y / N

Site Operator: 1. 050 r nio

Week #: 11 ____ Day: 2____

Site		Thermal F	ire Station 39	Torres Martinez Des	ert Cahuilla Indians AMS				Mecca Fir	e Station 40			
Sample Name (Sit	Sample Name (Site - # - *P/CO/FS/FB)		TFS (TD) - 42	TM (XAD) - 42	TM (TD) - 42	MFS (XAD) -	42	MFS (TD) -	42	MFS (XAD) - (FB / FS / CO	9 42	MFS (TD) - (FB / FS / CC	9 42
Barcode		\$2302	0 10 47	5230	201051		\$230	201055				Lolosa	
Tube ID			407472		407471			4261	\$53			420	6692
Sample Start (Dat	e, PST)	62 01 23	1036	02 02 23	Caka			0916	62 (07/23	0918			
Sample Stop (Date	e, PST)	02/05/23	1006	02/08/23	0938	02/08/13	0902	02/08/23	0903	62/08/23	6900	02/05/23	0901
ETM (Start / Stop	(Hours))	990.2	/ 1013.7	992.5	1 1015.4	14. 4 1011.1 / 1034.9 1042.2 / 1065.9 2118.61		2118.61	2142.3	709.5	733.2		
Flow (Start / Stop	(CCM))	100.6 / 103.0	24.7 / 28.4	101.8/ 85.6		100.2 /	46.6	24.9	/ 24.3	100.2 /	98.9	25.5	19.8
Temperature (Alicat)	At Start / Stop (°C)	32.13	/ 29.93	30.37 / 24.91		24.26 / 16.33							
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	772	1 772	772	1 773				775	/ 777			
Relative Humidity	At Start / Stop (%)	lL	/ 20	16	/ 20				16	/ 30			
(Acurite)	24-Hour Min / Max	14	/ 48	lle	1 46				14	/ 48			
Precipitation (At Start / Stop)**		🕖 L М Н	/ 🔊 L М Н	NLM H	/ 🕅 L М Н			N L	ΜΗ		ИΗ		
Wind (At Start / Stop)*** S D M H / S M H			/ SLM H	S LM H	/ SLMH	S [] М Н / S L М Н							

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		02107 - Ag activity in ac fierd	ij	
Flow Meter SN / Barcode(s)	laure			

Flow Meter SN / Barcode(s)	194559	
Shipped/ Delivered to Lab (Date , PST, Initials)	02/12/23 @ 1100 190	, ,
Shipped / Delivered <5° Celsius?	(Y) N	

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

Site Operator: 1. Osornio

Illey Pesticide Monitoring

Week #: _____ Day: _____

Site		Thermal Fi	ire Station 39	Torres Martinez Des	ert Cahuilla Indians AMS				Mecca Fire	e Station 40			
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 43	TFS (TD) - 43	TM (XAD) - 43	TM (TD) - 43	MFS (XAD)	43	MFS (TD) -	43	MFS (XAD) - FB / FS / CO)	43	MFS (TD) - (FB) FS / CO)	43
Barcode		J230	20 1048	\$230201052			\$230	201056		Ĵ23020 1060			
Tube ID			426668		426669			407411				4000	153
Sample Start (Date, PST)		02/05/23	1015	02/05/23	0446	02 08 23	0914	02 03 23	0915	02/05/23	6909	02105123	0410
Sample Stop (Date, PST)		02/04/23	1010	02/04/23	0939	02/09/23	0908	02104123	0909	02/04/23	0914	02/09/23	0915
ETM (Start / Stop (Hours))		1013.7	1 1037.6	1015.4	15.4 / 1039.3 1034.4 / 1058.8 1065		1065.91	1084.8	/				
Flow (Start / Stop ((CCM))	94.1 / 94.4	25.2 / 27.4	94.0 / 940	24.9 / 257	44.3	197.3	24.7	23.4	1		1	
Temperature (Alicat)	At Start / Stop (°C)	39.7	1 32.77	29.80	1 28.07			22	2-97	/ 22.	41		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	771	1 771	772	1 771			1	774	1 776			
Relative Humidity	At Start / Stop (%)	16 / 16		16/ 16		25 / ile							
(Acurite)	24-Hour Min / Max	16	1 60	16	1 56				14	55			
Precipitation (At Start / Stop)**		NLMH/NLMH		Мсмн/Мсмн		NLMH/NLMH							
Wind (At Start / Stop)***		s 🕡 м н	/ S L M H	SL M H	/ ѕ 🕕 м н			SL	МΗ,	/ S L 🕅	ЛН		

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		

Flow Meter SN / Barcode(s)	194559		
\sim	1	*For Sacramento Drop Off Only*	
Shipped / Delivered to Lab (Date , PST, Initials)	02/12/23 @ 1100 160	Received By Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsius?	Y N	Received <5° Celsius?	Y / N

Site Operator: L. OSornio

Week #: _____ Day: ____

Site		Thermal Fire	e Station 39	Torres Martinez Deser	t Cahuilla Indians AMS		Mecca Fire	e Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 44	τες (TD) - <mark>4</mark> 4	TM (XAD) - 44	тм (TD) - ЧЧ	MFS (XAD) - 44		MFS (XAD) - (FB / FS / CO)	MFS (TD) - (FB / FS / CO)
Barcode		52302	01049	3230201053		5230	0201057		
Tube ID			407460		426679		342 4126656		
Sample Start (Date, PST)		02/04/23	1018	02/04/23	0947	02/06/23 0917	02/01/23 0418		
Sample Stop (Date, PST)		02/10/23	0959	02/10/23	0939	02/10/23 041	3 02/10/23 0914		
ETM (Start / Stop (Hours))		1037.6	1061-3	1039.3	1063.1	1058.8/ 1082.	7 1089.9 / 1113.8	/	/
Flow (Start / Stop	(CCM))	100.4/102.4	25.0/27.2	100.9 / 97.9	25.2 / 24.0	101.8 / 99.3	25.7125.7	. /	/
Temperature (Alicat)	At Start / Stop (°C)	36.27	25.13	32.62	21.38		25.06	15.95	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	770	774	771	1 775		773	178	
Relative Humidity	At Start / Stop (%)	(6	16	16	16		16	26	
(Acurite)	24-Hour Min / Max	16	54	16	41		16	/ 41	
Precipitation (At Start / Stop)**		NLMH/	'NLMH	№ LМН,	/ 🕅 L M H		<u>(</u>) LМН,	/ 🔊 і м н	
Wind (At Start / Stop)***		(с) с 🖗 н /	SLMH	sсмн	/ SLМН		SLMH,	/ S L M H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	62/10 - Ag activity in adj field	
------------------------	-------------------------------------	--

Flow Meter SN / Barcode(s)	194559
Shipped) Delivered to Lab (Date , PST, Initials)	02/12/23 @ 1100 160
Shipped / Delivered <5° Celsius?	YY N

Т

Y / N	
	Y / N

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

				Thermal Fire Station	Torres Martinez	Mecca Fire Station	a na sea na s
				Unit #_3	Unit # _2	Unit #	Unit #
		Temperature	At Start / Stop (°C)	24 / 25	28 / 26	21 / 22	
Day 1	2/06/23	(Acurite)	24-Hour Min / Max	11 / 29	q / 31	9 / 35	/
Dayı	62/	Relative Humidity	At Start / Stop (%)	14 / 14	16 / 16	lis / ile	1
	Date:	(Acurite)	24-Hour Min / Max	le / 39	16 / 35	lv / 32	1
		Temperature	At Start / Stop (°C)	100 160 24 / 27	26 / 28	20 / 18	/
Day 2	62/03/23	(Acurite)	24-Hour Min / Max	4 / 38	(e 1 33	5 / 29	/
Duyz	Date: 621	Relative Humidity	At Start / Stop (%)	16 / 20	16 / 16	16/30	/
		(Acurite)	24-Hour Min / Max	(6 / 48	16 / 46	is / 48	1
		Temperature (Acurite)	At Start / Stop (°C)	28 / 30	28 / 31	20 / 24	/
Day 3	02/08/23		24-Hour Min / Max	4 / 34	с [/] 33	5 / 28	/
Days	021	Relative Humidity	At Start / Stop (%)	16 / 16	16 / 16	28 / 16	1
	Date:	(Acurite)	24-Hour Min / Max	11 / 60	16 / 56	16 / 55	/
	~	Temperature	At Start / Stop (°C)	31 / 26	35 / 24	25 / 17	/
Day 4	04/23	(Acurite)	24-Hour Min / Max	0 / 36	2 / 36	3 / 33	/
Day 4	02/0	Relative Humidity	At Start / Stop (%)	16/16	16/16	16 / 26	/
	Date:	(Acurite)	24-Hour Min / Max	16 / 54	16/41	(v / 41	/

Week #: _____

ECV Pesticide Rev.: 12/19/22

J. De La Rana Site Operator:

Sample Name (Site - # - *P/CO/FS/FB)

Sample Start (Date, PST)

Sample Stop (Date, PST)

ETM (Start / Stop (Hours))

Flow (Start / Stop (CCM)) Temperature

> (Alicat) Barometric

Pressure (Alicat)

Relative Humidity (Acurite)

Precipitation (At Start / Stop)**

Wind (At Start / Stop)***

56

30

Site

Barcode Tube ID

California Air Resources Board Field Data Sheet Eastern Coachella Valley Pesticide Monitoring

Ĩ	ama				mey resultive mom	torning		Week #:	12 Day: 01
-	The	Thermal Fire Station 39 Torres Martinez Desert Cahuilla Indians AMS					Mecca Fire	e Station 40	
	TFS (XAD) -	45	TFS (TD) - 45	TM (XAD) - 45	TM (TD) - 45	MFS (XAD) - 4,5	MFS (TD) - 45	MFS (XAD) - 45 (FB / FS7 CO)	MFS (TD) - 45
	523020	8 00 l		523920 800	5	\$23020800	9	5230208015	
			426621		426680		426670		426629
	2023 102	1 13	09450	2023102/13	0923	2023/02/13	08570	ZOLJIPLI 13	08579
	2013/01	114	0957	2023/02114	0929	2023) 02/14	08570	2023102/14	0157.
	1061.	5	1 1085.5	1063.2	1 1087.3	1082.8/1106.3	1113.9/1137.9	2142.4/2166.4	733.3 1757.3
	100.0/1	øi.2	25.0 125.2	100.0/1017	25.0 124.2	im.z / 99.3	25-1/25.7	100.0/98.2	25.0125.8
	22.32		1 21.73	22.77 -	122.17	21.6	3	1 20	- 44
	763		1760	763	/ 760	76	4	1 71	ç <u>3</u>
	1		~					<u>de la contraction de la contraction de</u>	and the second

40

27

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

At Start / Stop (°C)

At Start / Stop (%)

24-Hour Min / Max

At Start / Stop (mmHg)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

1			
Field Notes / Comments			1
neu notes / comments		1	
		1	
	the second se	1	

46

49

7

1

ØLMH/ØLMH

\$ L M H / S **(**) M H

Flow Meter SN / Barcode(s)

194557

30

35

1

1

NLMH/ WLMH

∫S L M H / S L M H

32

46

Shipped / Delivered to Lab (Date , PST, Initials)	2023/02/21 1200p JD
Shipped / Delivered <5° Celsius?	Ø/N

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y / N

1

 T^{\diamond}

ØLMH/ ØLMH

ØLМН/ S ØМ Н

ECV Pesticide Rev.: 12/19/22

1.5

51

83

Site Operator: J. De La Rama

Week #: 12 Day: 02

Site		Site Thermal Fire Station		Torres Martinez Dese	rt Cahuilla Indians AMS	Mecca Fire Station 40				
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 46	TFS (TD) - 46	TM (XAD)- 45	TM (TD)- 46	MFS (XAD) - 45	MFS (TD) - 46		MES (TD) - 45	
Barcode		52302080	02	523020800	6	52302080) 0	52302080		
Tube ID			400456		426624	4 426659		426616		
Sample Start (Date	e, PST }	2023/02/14	10004	2023/02/14		2023/02/14 0902 a 2023/02/14 085				
Sample Stop (Date	, PST)	2023102115	1049.	2023/02/1	5 1023a	Z023/02/15 0951 a 2023/02/14 (09044		
ETM (Start / Stop ((Hours))	10ps.6	1110.4	1087-4	/ 1112.2	1106.9/1131.7 1137.9/1162.7 2156.4 1266.4 757.		757.3/757.3		
Flow (Start / Stop	(CCM))	100.2/100.0	25.2/47.1	101.5/92.8	25.3 125.4	109.E / 101.3	25.0 125.2	0 / 0	0 / 0	
Temperature (Alicat)	At Start / Stop (°C)	21.59	20.25	758 50	ins 769	l	1.79	1 7.16	<u> </u>	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	760	770	758	1 769	1	362	1 771		
Relative Humidity	At Start / Stop (%)	30	/ 16	45	1 21		49	1 16		
(Acurite)	24-Hour Min / Max	16	15	16	1 21		16	1 16		
Precipitation (At Start / Stop)**		NLMH,	/NLMH	NLMH	/ 🕅 L М Н		N L M H	/ 🕅 L М Н	<u> </u>	
Wind (At Start / St	op)***	s L M н ,	/ s L 🕅 H	s () м н	/ ѕ 🗋 м н		s 🗋 м н	н s(L) м н / s L (M) н		

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments	Pump best was Knocked down t PVC PUL opp for TD channel,	Stort/Shp krp (°C): 22.43 (19.58
·	MASS likely due to grating wind.	

Flow Meter SN / Barcode(s)	194557
Shipped / Delivered to Lab (Date , PST, Initials)	
Shipped / Delivered <5° Celsîus?	Y/N

For Sacramento Drop Off Only	,
Received By Lab (Date , PST, Initials)	· · · · · · · · · · · · · · · · · · ·
Received <5° Celsius?	Y/N

Site Operator: J. De La Rana

Week #:	12	Day:	03

Site		Thermal Fir	e Station 39	Torres Martinez Deser	t Cahuilla Indians AMS	Mecca Fire Station 40				
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 47-	TFS (TD) - 47	TM (XAD)	TM (TD) - 47	MFS (XAD) - 47	MFS (TD) - 47	MFS (XAD) - 47 (FB / FS / CO) 47	MFS (TD) - 47	
Barcode		523020800	3	S2302080	07	5230208011 5230208014				
Tube ID		· · · · · · · · · · · · · · · · · · ·	426628		426625	5 407456			426630	
Sample Start (Date	e, PST)	2023/02/15	1051a	2023/02/15	- 1024a	7.23 / 22/10 0				
Şample Stop (Date	, PST)	2023/02/16	1004a	2023/02/1	6 Q94pa					
ETM (Start / Stop ((Hours))	1110.4	1133.6	135.430	115135.4			757.41780.6		
Flow (Start / Stop	(CCM))	100.8/101.2	25.0136.4	100.4/95.3	25.0125.0	99.8 12 92.1	25.1 122.7	100.3 / 98.5	25.1 123.1	
Temperature (Alicat)	At Start / Stop (°C)	19.86	20.65	20.11	18.74	17.	13	/ 16.13		
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	769	774	770	777	7	71	1 776		
Relative Humidity	At Start / Stop (%)	16	16	16	16		6	/ 16	- <u>tat</u>	
(Acurite) 24-Hour Min / Max		16 ,	40	16	· 40		6	/ 51		
Precipitation (At S	tart / Stop)**	NLMH,	′ 🕅 L М Н	_Ю ьмн,	/ 🕅 L M H	лн 🔞 смн/ 🔊 смн		<u>an an a</u>		
Wind (At Start / St	op)***	s L (М) н ,	′ѕѺмн	s (тмн,	/ølmh		S L 🕅 H	/ ѕ () м н		

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

a	TM ETM Stort = 11122 hrs	MPS TO ETM	n= 1185.9 hours.
Field Notes / Comments			
:			

Flow Meter SN / Barcode(s)	194557
Shipped / Delivered to Lab (Date , PST, Initials)	2023/02/21 1200p JD
Shipped / Delivered <5° Celsius?	(Ŷ∕ N

8

Received By Lab (Date , PST, Initials)		
Received <5° Celsius?	Y/N	

Site Operator: J. De La Rama

Week #: 12 Day: 04

Site		Thermal Fi	re Station 39	Torres Martinez D	esert Cahuilla Indians AMS		N	con Fire Station	40	
	· · · · · · · · · · · · ·	TTO NUMBY		TM (XAD) -		MFS (XAD) - 4 n	r	ecca Fire Station		
Sample Name (Site - # - *P/CO/FS/FB)		1FS (XAD) - 48	TFS (TD) - 48	85	78	MFS (XAD) - 48	Wirs (1D) -	HR MFS (XA		MFS (TD) - (FB / FS/ CO)
Barcode		52302080	04 1	523020	8008	5230208012				
Tube ID			426623		42.6519		42667	2		
Sample Start (Date	e, PST)	2023/02/14	5 10079	2023102	115 0942a	2023/02/16	0903	4		
Sample Stop (Date	, PST)	2023/02/1	7 0224	2023/02	117 1002a	1 2023/02/17 0941-				
ETM (Start / Stop (Hours))	1133.7	/ 1157.9	1135.5	/ 1159.8	1154.9/1179.5 1186.9/1210.5		1		
Flow (Start / Stop ((CCM))	100.01 99.7	25.1 125.7	100.01 91.	1 25.1 127.6	100.0/106.5	24.9/2	6.6	1	l and a second
Temperature (Alicat)	At Start / Stop (°C)	20.73	/ 22.46	18.99	1 22.47	16	.03	/	18.15	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	774	1 768	773	1 769	71	17	-1	772	
Relative Humidity	At Start / Stop (%)	16	/ 16	16	1 16		16	1	16	
(Acurite) 24-Hour Min / Max		16	/ 16	l 16	1 16		15	1	26	
Precipitation (At Si	tart / Stop)**	ŊLMH	/ 🕅 ІМН	() LMH	н/ <mark>(</mark>) смн	<u>()</u> L M H / () L M H				
Wind (At Start / St	op)***	sОмн	/ ѕ() м н	(g l m f	н/блин		SON	1 н / ѕ 🕻	Эм н	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

		· · · · · · · · · · · · · · · · · · ·	
Field Notes / Comments			

Flow Meter SN / Barcode(s)	194557
Shipped / Delivered to Lab (Date , PST, Initials)	2023/02/21 1200p JD
Shipped / Delivered <5° Celsius?	Ø/ N

Y/N	
	Y/N

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

2023/04/13

Date:

Date: 2023/02/14

Date: 2020/02/15

Date: 2023 02115

Relative Humidity (Acurite)

Day 1

Day 2

Day 3

Day 4

			·			
			Thermal Fire Station	Torres Martinez	Mecca Fire Station	
	ļ		Unit # <u>3</u>	Unit #	Unit #	Unit #
2	. Temperature	At Start / Stop (°C)	17 / 23	29 / 22	25 / 17	/ /
(Acurite)		24-Hour Min / Max	21 / 23	21 / 22	6 1 25	
10%	Relative Humidity	At Start / Stop (%)	56 / 30	32 / 46	40 / 51	/ /
	(Acurite)	24-Hour Min / Max	30 135	45,49	27 183	
-	Temperature (Acurite) Relative Humidity	At Start / Stop (°C)	24 / 19	22 / 22	17 / 20	//
		24-Hour Min / Max	18 / 19	19 / 22	20 126	1
		At Start / Stop (%)	30 / 16	45 / 21	49 / 16	/
	(Acurite)	24-Hour Min / Max	6 1 16	16 / 21	16 / 16	1
-	Temperature	At Start / Stop (°C)	19 / 23	22 / 23	20 / 23	
	(Acurite)	24-Hour Min / Max	-1 / 31	Q / 25	1 1 35	
Relative Humidity (Acurite)	At Start / Stop (%)	16 / 16	30 50 16 1 16	16 / 16	/ /	
	24-Hour Min / Max	16 / 40	16 / 40	16 / 51		
2	(Acurite)	At Start / Stop (°C)	23 / 25	23 / 23	23 / 18	/ /
		24-Hour Min / Max	25 1 25	23 126	16 / 18	

16

16

15

16

/

1

16

16

At Start / Stop (%)

24-Hour Min / Max

16

1 16

1

16

16

_/

16 / 26

Week #: _12

ECV Pesticide Rev.: 12/19/22

7

1

Site Operator: ______

Week #: <u>13</u> Day: ____

.

:

2

Site		Thermal Fi	re Station 39	Torres Martinez Dese	rt Cahuilla Indians AMS	1	Mocco Fir	o Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 49	TFS (TD) - 49	TM (XAD) - 49	TM (TD) - 49	MFS (XAD) - 49	MFS (TD) - 49	MFS (XAD) (FB (FS) Co) 49	MFS (TD) -1
Barcode		5230215	058			2	5230215070		
Tube ID			400457		426685		407469	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	426681
Sample Start (Date	e, PST)	2/21/23	1148	2/21/23	1112	2/21/29 1043		2/21/23 1043	120.02
Sample Stop (Date	, PST)	2/22/23	1129	2/22/23	1101	2/22/23 1011	2/22/23 1011		
ETM (Start / Stop (Hours))	1158.0	1 1181.9	1159,9	11181.3	3 1179.61 1203.1 1210.91 1234,2 2189.81 2213.2		280.71 804.2	
Flow (Start / Stop)	(CCM))	991118	25.5140.5	100,21 118,6	25.1129.9	29.9 101.91118.0 24.2129.6 100.61118.		100.61 1180	24.5 130
Temperature (Alicat)	At Start / Stop (°C)	25.8	1 22.3	23.9	21.8	22 ,		1 19.2	- /0
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	14.64	1 14.70	14.60	1 14.70	14.	71	1 14.74	
Relative Humidity	At Start / Stop (%)	25	1 18	16	16		31	1 20	
(Acurite) 24-Hour Min / Max		16	125	16 1 4 1		16		1 50	
Precipitation (At St	art / Stop)**	N M H	/ Л. мн	NLMH,	NLMH	NLMH/NLMH			
Wind (At Start / St	op)***	s l(m)h	/ S L M H	SLMH	SLMH		S L MH	/ SLM(H)	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		

Flow Meter SN / Barcode(s)	271602	
Shipped / Delivered to Lab (Date , PST, Initials)	3/1/23	m
Shipped / Delivered <5° Celsius?	Υ/	'N

For Sacramento Drop Off Only	
Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y/N

Site		Thermal Fi	ire Station 39	Torres Martinez Dese	ert Cahuilla Indians AMS	Mecca Fire Station 40			
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 50	TFS (TD) - 50	TM (XAD) - 50	TM (TD)- 50	MFS (XAD) - 50	MFS (TD) - 50	MFS (XAD) - 50 (FB / FS (CO)	MFS (TD) - 50 (FB / FS (CO)
Barcode		5230215	5055	52302	15061	52302	215063	523021	5069
Tube ID			426620		407413		487467		426684
Sample Start (Date	≥, PST)	2/22/23	1132	2/22/23	1109	2/12/23 1050	2/2/23 1050	2/22/05 1050	2/22/23 1050
Sample Stop (Date	e, PST)	2/23/23	1057	2/23/23	1010	2/23/23	2/23/23 952	2/23/23 952	2/15/23 952
ETM (Start / Stop	(Hours))	1181.9	1205.2	1181.3	1 1206.7	1203.211226.2	1234.11257.3	2213,2-12236.3	804.21 827.3
Flow (Start / Stop	(CCM))	99196.5	25 134	99.8 1 110	25 125	102 1 101	24/24	104 1112.7	25.2125.0
Temperature (Alicat)	At Start / Stop (°C)	22.3	1 24,3	14.6	1 21.3		1953	1 16.4	3
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	14.69	1 14.78	14.74	1 14.80		14.73	1 14.86	>
Relative Humidity	At Start / Stop (%)	16	1 40	16	1 40		16	1 37	
(Acurite)	24-Hour Min / Max	10	1 61	16	1 60		10	1 58	
Precipitation (At S	tart / Stop)**	NLMH	/ 🔊 L М Н	NLMH	(NLMH		N M H	NL M H	
Wind (At Start / St	:op)***	SLMH	/ S L M H	SLMH	/ SLMH		SLNH	/ s(L)M H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Site Operator: ____

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments			
	L		

Flow Meter SN / Barcode(s) 2

271602	
--------	--

Shipped / Delivered to Lab (Date , PST, Initials)	3/1/20	m	
Shipped / Delivered <5° Celsius?	Y/N		

Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y/N

-

ł

_

ECV Pesticide Rev.: 12/19/22

Week #: <u>13</u> Day: <u>2</u>

ł

Site Operator: VACA

Week #: <u>13</u> Day: <u>3</u>

Site		Thermal Fi	e Station 39	Torres Martinez Desert Cahuilla Indians AMS		Mecca Fire Station 40			
Sample Name (Site	Sample Name (Site - # - *P/CO/FS/FB)		TFS (TD) - 51	TM (XAD) - 51	TM (TD) - 51	MFS (XAD) - 51	MFS (TD) - 51		MFS (TD) - (FB) FS / CO)
Barcode		5230215056		5230215059		5230215	064	323021	
Tube ID			426622		426058		407464		407468
Sample Start (Date, PST)		2/23/23	1111	2/23/23	1014	2/25/23 945	2/23/23 945	2/23/23 945	
Sample Stop (Date, PST)		2/24/23	1105	2/24/23	1039	2/24/23 1009	2/24/23 1008	424/23	etertez
ETM (Start / Stop (Hours))		1205.2	1228.1	1206.7	1231.1	122621 1250,10	1 1 1	223651 -	827.31-
Flow (Start / Stop (CCM))		1031101	25.2126	99.41105	26 126.8	100,3 199.7	24,2-124.4	- 1-	-1-
Temperature (Alicat)	At Start / Stop (°C)	23.65	22,23	25.00	1 21.09		16.76	1 15.25	-
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	14.76	14.84	14.28	1 14,83		14.85	1 14.94	
Relative Humidity At Start / Stop (%)		36	36	34	36		34	1 36	
(Acurite)	24-Hour Min / Max	36	46	34	46		33	1 46	
Precipitation (At Start / Stop)**		(N)LMH,	(NLMH	NLMH,	NLMH		NLMH,	NLMH	
Wind (At Start / Sto	op)***	S LMH	'SLMH	SLMH,	/ S L M H		SLMH	/ S (M H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

***Circle One - Still (S), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		

Flow Meter SN / Barcode(s)

271602

Shipped / Delivered to Lab (Date , PST, Initials)	3/1/23		m
Shipped / Delivered <5° Celsius?		Y / N	0

Received By Lab (Date , PST, Initials)	
Received <5° Celsius?	Y/N

VACA Site Operator:

Week #: <u>13</u> Day: <u>4</u>

Site			e Station 39	Torres Martinez Dese	ert Cahuilla Indians AMS		Mecca Fire	e Station 40	
Sample Name (Site	e - # - *P/CO/FS/FB)	TFS (XAD) - 52	TFS (TD) - 52	TM (XAD) - 52	TM (TD) - 52	MFS (XAD) - 52	MFS (TD) - 52	MFS (XAD) - (FB / FS / CO)	MFS (TD) - (FB / FS / CO)
Barcode		5230215057		5230215060		523021	5230215065		
Tube ID			426617		426614		407466		
Sample Start (Date	e, PST)	2/24/23	1113	2/24/23	1047	2/24/23 1016	2/24/23 1016		
Sample Stop (Date	, PST)	2/25/23	1048	2/25/23	1025	2/25/23 0952	2/25/23 952		
ETM (Start / Stop (Hours))		1229.1	1252.6	1231-1	1 1254.8	1250.61274.2	1281.711305.3	1	1
Flow (Start / Stop (CCM))		184 1 102	25.6 125	1051106.8	24 130.5	99 148.7	29,2 123.5	1	1
Temperature (Alicat)	At Start / Stop (°C)	22.02	17.76	21.34	1 16,69		12.12	13.72	-
Barometric Pressure (Alicat)	At Start / Stop (mmHg)	14.84	764	14.15	1 763		14.91	1 768	
Relative Humidity	At Start / Stop (%)	36	179	35	1 69		17	178	
(Acurite)	24-Hour Min / Max	27	84	29	1 86		33	~83	
Precipitation (At Start / Stop)**		(N)LMH,	/ N(L)M H	NLMH.	/NLMH		NLMH,	/ NLMH	
Wind (At Start / Sto	op)***	SLM(H)	′ s(рм н	SLMH	∕s€ин		SLM(H)	/ S L M H	

*Circle One, If Applicable - Primary, Field Blank (FB), Field Spike (FS) Collocated (CO)

**Circle One - None (N), Light (L), Moderate (M), Heavy (H)

Field Notes / Comments		

Flow Meter SN / Barcode(s)

271602/153013

Shipped / Delivered to Lab (Date , PST, Initials)	3/1/23		m
Shipped / Delivered <5° Celsius?		Y/N	0

Y/N

California Air Resources Board Field Data Sheet For Ambient Conditions (Acurite Monitor)

Eastern Coachella Valley Pesticide Monitoring

			Thermal Fire Station Unit #	Torres Martinez Unit #	Mecca Fire Station Unit #	Unit #
	Temperature	At Start / Stop (°C)	27 / 22	32121	22/18	/
	(Acurite)	24-Hour Min / Max	2/122	10/34	8,3133	1
	Relative Humidity	At Start / Stop (%)	22 116	20/21	35 1 16	/
Date:	(Acurite)	24-Hour Min / Max	16/22	16141	12/45	1
	Temperature	At Start / Stop (°C)	22/21	21/22	18/17	/
Day 2	S (Acuite)	24-Hour Min / Max	5124	7125	5120	1
Cuy 2 C	Relative Humidity	At Start / Stop (%)	16 1 14	21/31	16/17	/
Date.	(Acurite)	24-Hour Min / Max	14 1 51	16 1 53	16157	1
d	Temperature	At Start / Stop (°C)	24/19	22122	17 / 17	/
n a la	(Acurite)	24-Hour Min / Max	19125	21/22	151 17	1
0043	Relative Humidity	At Start / Stop (%)	42 41	31/35	17/45	1
Date:	(Acurite)	24-Hour Min / Max	36146	31137	15195	1
K	Temperature	At Start / Stop (°C)	19122	21/21	17/17	1
4 10	(Acurite)	24-Hour Min / Max	5122	5122	5122	1
	Relative Humidity	At Start / Stop (%)	41179	35 1 69	45 178	/
Date:	(Acurite)	24-Hour Min / Max	411100	35186	P39 186	/

Week #: <u>13</u>

ECV Pesticide Rev.: 12/19/22

Attachment D

Sampling Protocol

December 13, 2022

SAMPLING PROTOCOL FOR METAM SODIUM, 1,3-DICHLOROPENE, AND CHLOROPICRIN IN EASTERN COACHELLA VALLEY

Prepared by Community Air Monitoring Branch Monitoring and Laboratory Division 12/13/2022

Contents

1.	Study Locations	1
2.	Study Design	1
	List of Field Equipment	3
3.	Sampling and Analysis Procedures	10
4.	Field Quality Assurance and Quality Control Procedures	10
	Sample Identification	11
5.	Laboratory Quality Assurance and Quality Control Procedures	11
6.	Deliverables	14
	Northern Laboratory Branch	14
	Community Air Monitoring Branch	14

Figure 1 - Cartridge Sampler Setup	2
Figure 2 - Sample Cartridge with Label	
Figure 3 - MITC/1,3-D Cartridge Loaded into Sampler	5
Figure 4 - Thermal Desorption Sample Tube with Brass Caps	8
Figure 5 - XAD Cartridge in Culture Tube	8
Figure 6 - Blank Field Data Sheet	9

Table 1 - Sampling Site Names and Locations	1
Table 2 - Weekly Sampling Summary	3
Table 3 - Field and Laboratory QA/QC	13

1. Study Locations

Sampling is planned to take place within the Eastern Coachella Valley (ECV) Assembly Bill 617 (AB617) boundaries. Due to the small size of the community, a background sampling location will not be available. One site will be selected as the quality control (QC) location and will have an additional set of samplers to run QC samples.

The following sites have been approved by the community steering committee (CSC):

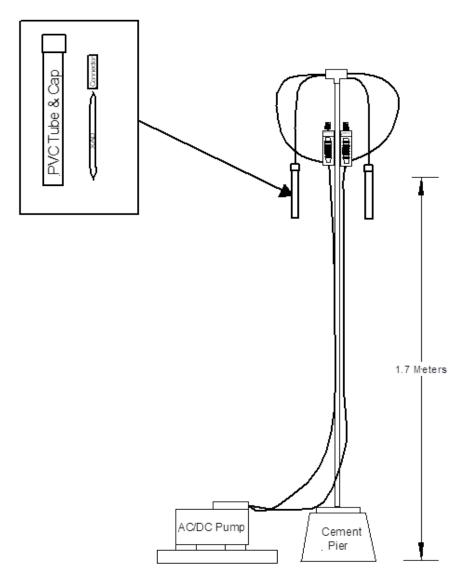

Site Name	Address	Coordinates
Mecca Fire Station 40 (Quality	91350 66th Ave, Mecca, CA	33.569733, -116.072808
Control)	92254	
Torres Martinez Desert Cahuilla	66725 Martinez Rd, Thermal,	33.561153, -116.153419
Indians air monitoring station	CA 92274	
Thermal Fire Station 39	86911 Avenue 58, Thermal, CA 92274	33.626767, - 116.147514

Table 1 - Sampling Site Names and Locations

2. Study Design

Prior the start of the sampling campaign, sampling equipment shall be installed at each location. A duplicate set of samplers shall be installed at the pre-determined QC location. Figure 1 depicts a standard pesticide cartridge sampler setup.

Figure 1 - Cartridge Sampler Setup

MITC, 1,3-D, and chloropicrin sampling will occur simultaneously on a pre-determined, randomized weekly schedule for 13 weeks. During the 13-week sampling period, four consecutive 24-hour samples will be collected in sequence at each sampling location each week. The sample start and end times will vary depending on field staff work schedules. Field staff will start and retrieve samples at their arrival to each site. Field spikes (FS), field blanks (FB), and collocated duplicate (CO) samples will each collected once a week at the selected QC site.

Field spikes will be prepared by the laboratory on a weekly basis. Depending on the location of the field staff that will be in the field for that week, the spikes will either be picked up by local field staff or shipped to the Riverside headquarters. Field staff will notify the Northern Laboratory Branch of the spike

delivery method one week in advance. The remainder of the sampling media do not require refrigeration and may be picked up or shipped following the laboratory's preferred handling method.

If CAMB staff is local, they will transport the cartridges to and from MLD's laboratory in Sacramento, and to and from each sampling location. If Riverside staff are completing the field work for the week, samples will be shipped to the Southern California office in an insulated container/ice chest with ice blocks to maintain a temperature of <5° Celsius for the duration of the shipment. The cartridges should not be exposed to any extreme conditions or subjected to rough handling that may cause loss or degradation to the sample. The sample temperature will be monitored using 5° WarmMark temperature strips that will be activated immediately before the samples are picked up or packed for shipment. The site operator shall record the temperature of the field spikes on the chain-of-custody (COC) upon receipt.

The field spikes shall arrive to the QC sampling location with no red indicators in the windows to remain valid and usable for sampling. Field spikes must be stored below 5° Celsius except during sampling. The site operator shall have available a sufficient number of ice packs or equivalent dry ice to keep the field spikes and sampled cartridges below 5° Celsius for the duration of the sampling week and during final shipment/transport. If the samples are not immediately shipped at the end of each week, they must be stored in a freezer and shipped as soon as possible.

Table 2 provides a summary of the weekly sampling needs.

Analyte	Measurement/ Sampling Frequency	Sample Duration (Hours)	Sample Flow Rate (SCCM)	Site 1	Site 2	Site 3	Additional QC (One each/week)	Total number of samples/week
MITC/1,3-D	4x/week	24±1	25±10%	Х	Х	Х	FB, FS, CO	15
Chloropicrin	4x/week	24±1	100±10%	Х	Х	Х	FB, FS, CO	15

Table 2 - Weekly Sampling Summary

Sampling times will be recorded in Pacific Standard Time (PST) and the chain-of-custody form (COC) and field data sheet (FDS) will be completed as such.

Field operations will require a variety of equipment and shall include the following:

List of Field Equipment

<u>Quantity</u>	Item Description
(1)	25-foot measuring tape
(1)	Global Positioning System (GPS) with backup batteries and carrying
	case
(1)	Digital camera with backup batteries and carrying case
(2)	Alicat Whisper or equivalent NIST certified flow meter with the
	appropriate flow range

Pesticide samplers each equipped with one sampling train and one
rotameter
Vacuum Pump
Acurite Digital Thermometer and Hygrometer monitors
XAD-4 Sorbent Tubes/Cartridges
Thermal Desorption Sorbent Tubes
ThermoSafe 422 Ice Storage Chest or equivalent
Large reusable ice blocks or equivalent dry ice

The air samplers will consist of an AC or DC powered pump capable of drawing at least 1000 CCM per minute. Sample flow will be controlled by an in-line rotameter and will be adjusted prior to each sample run to closely match the setpoint. Sample flow rates will be checked with a National Institute of Standards and Technology (NIST) traceable flow meter. At the start of each sampling period, the flow rate of the samplers shall be set to the pre-determined setpoint ±10%. Field staff will check the end flow rate of each sample just before stopping and retrieving said sample. The end flow should be within 20% of the setpoint upon sample retrieval. Each sample will run 24±1 hours. Exact sampling start and end times may vary. Samples outside of the flow and/or time criteria will be flagged. Prior to sampling the XAD cartridge shall be labeled as depicted in Figure 2.

Figure 2 - Sample Cartridge with Label

The MITC/1,3-D and chloropicrin shall be inserted into the sampler following the indicated flow direction of each cartridge. Both MITC/1,3-D and chloropicrin cartridges must be inserted with the arrow pointed downstream. Figure 3 shows a correctly inserted MITC/1,3-D cartridge.

Figure 3 - MITC/1,3-D Cartridge Loaded into Sampler

The procedure for sampling both MITC/1,3-D and chloropicrin shall follow these steps and shall be repeated for each site:

- 1. Prepare cartridges for sampling
 - a. Verify Tube ID of TD cartridge against COC
 - b. Record site name and start date & time on COC
 - c. Record site name, sample number, sample barcode, start date & time and the elapsed time meter reading on FDS
 - d. Prepare chloropicrin cartridge
 - i. Using a glass cutter or equivalent to snip both ends of a new XAD cartridge
 - ii. Ensure cartridge is intact with no cracks down the length of the glass
 - 1. If cracked, dispose of cartridge and repeat step I with new cartridge
 - iii. Attach label as depicted in Figure 2
 - e. Remove both caps of the MITC/1,3-D cartridge
- 2. Load sample cartridge or field spike (if applicable) onto sampler to the surgical tubing/inlet
 - a. Ensure the arrow printed on the cartridge is facing the correct direction
 - b. Thermal desorption field spikes may have a visual indicator for the spike such as stainless steel caps instead of brass caps
- 3. Start sample pump on manual mode
- 4. Attach flow meter to upstream side of cartridge
- 5. Allow flow to stabilize
- 6. Verify flow rate
 - a. Is flow rate within 10% of the setpoint?
 - b. Adjust flow via the rotameter knob to closely match the setpoint, if necessary
 - c. Record starting flow value on FDS
- 7. Remove flow meter
- 8. Attach solar shield to protect the sample cartridges
- 9. Close the pump box and battery boxes, if applicable
- 10. Fill out remainder of the COC and FDS $% \left({{{\rm{TD}}}_{\rm{T}}} \right)$
 - a. Hard reset temperature/RH monitor by pulling the battery for 10 seconds and reinstalling battery
 - i. Record current/start temperature (from Alicat) and humidity (from Acurite) on COC
 - ii. Record current/start temperature, barometric pressure, and humidity from Alicat/Acurite on FDS
- 11. Allow sampler to run for 24±1 hours
- 12. After 24±1 hours (subsequent day), remove the solar shield and attach flow meter while the sampler is still running
- 13. Allow flow to stabilize
- 14. Record flow value on FDS
 - a. Flow should be within 20% of setpoint
 - i. If not, flag sample
- 15. Stop sample pump
 - a. Record stop date & time and the elapsed time meter reading on FDS
 - i. If total sample time is not within 24±1 hours, flag sample
- 16. Remove sample cartridge
 - a. Place protective caps on sample cartridge

- i. XAD Place entire XAD cartridge with caps into culture tube
- ii. TD Place TD tube back into protective foam sleeve
- b. Place culture tube and protective sleeve in zipper lock bag
 - i. One small bag should contain all of the sampled XAD and TD tubes for the day
- c. Immediately place samples into ice chest with sufficient frozen reusable ice blocks or dry ice
- 17. Record relevant data
 - a. Record current temperature (from Alicat) and humidity (from Acurite) on COC
 - b. Record current/end and 24-hour min/max temperature, barometric pressure, and humidity from Alicat and Acurite on FDS
- 18. Check the entire sampling system for any issues or leaks
- 19. Repeat steps 1-18, if necessary (on sample days 2,3, and 4)
 - a. If sampling is complete for the week, reattach solar shield and close the pump and battery boxes, if applicable

The site operator shall plan to arrive at each site within 24±1 hours of the sample start to retrieve each sample. Upon stopping the sampler and removal of the cartridge, the MITC/1,3-D and chloropicrin cartridges must immediately be capped at both ends and be stored in a freezer or ice chest with ice blocks or dry ice below 5° Celsius. Brass/stainless steel caps shall be attached to the thermal desorption tubes immediately after the sample is retrieved as shown in Figure 4. The brass/stainless steel caps on the MITC/1,3-D samples should only be finger tight and no tools should be used. The chloropicrin cartridges will be capped with the provided caps and labeled with the provided sample labels. All samples must be inserted into a sealable culture tube or protective case to prevent contamination of the sample. Figure 5 shows an XAD cartridge inside of a plastic culture tube.

The COC will be completed to include the sample identification number, sample location, sample start time, and local temperature and relative humidity values. If possible, field staff will record the minimum and maximum temperature and humidity values during the sampling period. A separate FDS will contain additional information such as the sampler start and end flow rates, flow meter barcode, elapsed time meter readings, and local weather conditions. Figure 6 shows a blank FDS.

For the second, third, and fourth samples of the week, the sampler will be set up to run immediately after the retrieval of the previous sample following the above instructions. It will be the responsibility of the site operator to maintain data integrity of all samples and retrieve samples in a timely manner. Samples must be retrieved within 24±1 hours of the start time or they will be flagged. The site operator shall plan to set up and retrieve samples following the same site order for the remainder of the week.

After retrieval of the fourth sample of the week, the site operator shall turn off the pump and reattach the solar shield to the sampler. Any pump and battery boxes shall be shut. The site operator shall check the overall condition of the sampler(s) and fix any issues prior to the start of the next sampling week.

Figure 4 - Thermal Desorption Sample Tube with Brass Caps

Figure 5 - XAD Cartridge in Culture Tube

Figure 6 - Blank Field Data Sheet

ite Operator:		S	and a state of the second		in the second second		5551000	21402230	#:Day:
ite			Fire Station 39		sert Cahuilla Indians AMS	1		e Station 40	02110-001
Sample Name (Site - # - *P/CO/FS/FB)		TFS (XAD) -	TFS (TD) -	TM (XAD) -	тм (тр) -	MFS (XAD) -	MFS (TD) -	MFS (XAD) - (FB / FS / CO)	MFS (TD) - (FB / FS / CO)
arcode									
ube ID									
ample Start (Dat	e, PST)								
ample Stop (Date	e, PST)								
TM (Start / Stop	(Hours))		/		1	/	/	/	1
low (Start / Stop	(CCM))	1	/	/	1	1	/	/	1
Temperature	At Start / Stop (°C)		/		/			1	
(Alicat)	24-Hour Min / Max		/		1			1	
elative Humidity	At Start / Stop (%)		1		1			1	
(Acurite)	24-Hour Min / Max		/		1			1	
Barometric Pressure (Alicat)	At Start / Stop (mmHg)								
recipitation (At S	start / Stop)**	NLMH	I/NLMH	NLMH	/ N L M H		NLMH	/ N L M H	
rind (At Start / St	top)***	SLMH	H/SLMH	SLMH	/ SLMH		SLMH	/ S L M H	
Circle One - None (I	ble - Primary, Field Blank (FB), N), Light (L), Moderate (M), Her), Light (L), Moderate (M), Hea	avy (H)	d (CO)						
Field No	tes / Comments								
Flow Meter SN / Barcode(s)						6.)			
		···				*For Sacram	ento Drop Off Only*	×	
	Delivered to Lab , PST, Initials)					Received By La	ab (Date , PST, Initials)		
Shipped / Delivered <5° Celsius?			Y/N			Receiv	ed <5° Celsius?		Y/N

California Air Resources Board Field Data Sheet Eastern Coachella Valley Pesticide Monitoring

> ECV Pesticide Rev.: 12/09/22

At the end of each sampling week, the site operator shall prepare all samples for transport/shipping back to Sacramento. All associated paperwork shall be copied/photographed for backup purposes. All samples shall be placed in zipper lock bags containing all the samples for each day. The associated COC forms shall be included in the bags. The FDSs shall be forwarded to the project lead. All the daily sample bags for the week shall be placed in a single larger zipper lock bag, if possible. Staff shall insert an activated 5° WarmMark temperature strip into the larger bag. The entire sample package shall be placed into an insulated container with frozen ice packs or dry ice to maintain a sample temperature of below 5° Celsius. If not shipped or transported immediately, the samples may be placed in a freezer.

If local staff is performing the field operations for the week, they can secure the entire insulated container(s) or ice chest(s) in their vehicle for transport back to Sacramento. If using airline accommodations, staff shall secure samples within the shipping container to prevent damage. Staff must ensure that enough frozen ice packs or dry ice is included to maintain a temperature a sample temperature of below 5° Celsius for the duration of their travels. Staff shall deliver the frozen samples to a laboratory sample freezer or to the Laboratory Support Section's Sample Handling Team as soon as possible.

If Riverside staff is conducting field operations for the week, staff shall prepare the samples for shipment. Daily sample packages can be separated so they can be accommodated by the provided shipping containers. The ice packs shall be frozen for at least 24-hours prior to shipment. All samples shall be packed and secured as they were received. Multiple shipping containers may be used. Shipping labels should be addressed per the Laboratory Support Section's preferred method. Tracking numbers shall be provided to the Laboratory Support Section upon drop off to the shipping company.

3. Sampling and Analysis Procedures

Sampling will occur as scheduled unless inclement weather poses a safety hazard to field staff. Samplers may be set up in elevated locations and on rooftops without safety railings. Field staff safety will be prioritized. In the event of inclement weather such as high winds or heavy rain, field staff will determine if it is safe to set up and retrieve samples. If it is determined that it is unsafe to proceed and a sampling event is missed, a make-up sample may be collected if time and resources permit.

Every week, NLB will supply CAMB staff with new XAD cartridges and pre-logged thermal desorption tubes for primary and QC samples along with an additional 10% of cartridges which will be designated as backups. NLB will provide CAMB with FS for MITC/1,3-D and Chloropicrin that will be available the beginning of each sampling week. FSs must be analyzed within 30 days of spiking and should be returned at the end of each sampling week. Field staff will prioritize sampling of the FSs to occur in the beginning of each sampling week. Laboratory analysis of the samples will follow the appropriate methods. A summary of the methods for each sample type is included in Table 3.

4. Field Quality Assurance and Quality Control Procedures

QA and QC procedures for the cartridge samples will follow the flow rates and sample durations listed in Table 2. The site operator will handle all samples with care to avoid breakage and contamination including wearing nitrile gloves and placing samples in protective containers/bags when not sampling.

Instrument flow checks will be performed during set up and just before retrieval of each sample. Starting flow values outside of the setpoint value shall be adjusted to be within 10% prior to each sampling period. The average of start and end values will be used in the calculations of the ambient concentration values. Flow checks will be performed using NIST traceable flow meter(s) with the appropriate flow range(s). Samples outside of the flow and/or time criteria will be flagged.

The sampling instrumentation will also be checked for general operating errors and flow obstructions after each run.

A COC form will accompany each sampling pair of the MITC/1,3-D and chloropicrin cartridges. The site operator shall verify the tube identification number of the MITC/1,3-D cartridge against the COC form. The site operator shall affix the provided sample identification label to every chloropicrin cartridge. A FDS will be completed for each day to include additional field information such as local weather conditions, flow values, and sampler elapsed time meter readings.

QC samples may include field blanks, field spikes, and collocated samples. One of each QC type will be collected once per week at the selected QC location. Field staff will prioritize sampling of the field spike to occur in the beginning of each sampling week.

- Field Spike (FS) Thirteen (13) of each MITC/1,3-D and chloropicrin field spikes will be prepared by the laboratory by injecting 13 with a known concentration of each. The FS will run in collocation at the selected site one time per week.
- Field Blank (FB) Thirteen (13) of each MITC/1,3-D and chloropicrin blanks will be sampled by field staff at pre-determined QC site. The blank cartridge will be loaded on the sampling tree for five minutes, retrieved, and stored in the ice chest for the remainder of the sampling week.
- **Collocated Duplicate (CO)** A collocated duplicate sample will be sampled and handled as if it were a primary sample.

Sample Identification

For the chloropicrin samples, laboratory supplied labels will include a sample barcode. MITC/1,3-D cartridges will come from the manufacturer with a permanent identification number. Data on the FDS will include site names, sample numbers, and sample start dates.

Site Name:

- MFS Mecca Fire Station
- TM Torres Martinez Desert Cahuilla Indians air monitoring station
- TFS Thermal Fire Station

Quality Control Samples

- FS = Field Spike
- FB = Field Blank
- CO = Collocated Duplicate

Examples of a sample label are shown below:

- TFS (XAD) 12/1/22 001
 - This designates XAD/chloropicrin primary sample #001 at the Thermal Fire Station for December 1, 2022
- MFS (TD) 1/2/23 005 (FS)
 - This designates thermal desorption/MITC/1,3-D field spike sample #005 at the Mecca Fire Station for January 2, 2023.

5. Laboratory Quality Assurance and Quality Control Procedures

The following cartridge validation and analytical quality control criteria will be followed during laboratory analysis.

• **Sample Hold Time**: Sample hold time criteria will follow laboratory's hold time procedures. Samples not analyzed within established hold time will be flagged by the lab.

- **Duplicate/Replicate Analysis**: Laboratory will provide duplicate analytical results and the corresponding relative percent difference (RPD) criteria for duplicative analysis.
- **Reporting Limit (RL):** Sample analysis results less than the RL shall be reported as a less than numerical value. This less than numerical value shall incorporate any dilutions (dilution factor will be included in the report).
- **Analytical Linear Range**: Analytical results greater than 10% of the highest calibration standard shall be diluted and reanalyzed within the calibrated linear range.

Table 3 summarizes the field and laboratory QA and QC that will be implemented.

Pesticide	Media	Sampling Duration (Hours)	Sampling Flowrate (SCCM)	Field QC Components	Laboratory QC Components	SOP	Laboratory Instrument
1,3-D	Multi-sorbent thermal desorption tubes, such as Markes 'universal' tubes	24±1	25±10%	FS, FB, CO	ICAL, CCV, Control, MB, Duplicate/Replicate. See SOP for QC criteria.	MLD080	GC/MS
Chloropicrin	XAD-4 sorbent tubes, 600/200mg, custom SKC, or two 400/200mg tubes in tandem (SKC item #226- 175)	24±1	100± 10%	FS, FB, CO	ICAL, CCV, Control, LCS, MB, Duplicate/Replicate. See SOP for QC criteria.	MLD075	GC/MS or GC/MS/MS
MITC	Multi-sorbent thermal desorption tubes, such as Markes 'universal' tubes	24±1	25±10%	FS, FB, CO	ICAL, CCV, Control, MB, Duplicate/Replicate. See SOP for QC criteria.	MLD080	GC/MS

Table 3 - Field and Laboratory QA/QC

6. Deliverables

Northern Laboratory Branch

NLB will report validated lab data in analytical units (e.g. ng/sample) to CAMB within 45 days after the month of collection. *NLB will provide CAMB with access to NLB management-approved data via a LIMS database view. This will allow a direct download from the LIMS database to CAMB database. The data in the view will include the following topics:*

- 1. Sample identification (Site name, Field Type, Start Sample Date-Time & LIMS ID)
- 2. Analytical results in analytical units
- 3. Reporting limits
- 4. Dilution factors
- 5. Analytical date
- 6. Invalidation information
- 7. Laboratory and/or field comments
- 8. Collocated, Field/Trip Blank, Field Spike analytical results

In addition, upon request, NLB can provide CAMB the following:

- 9. All quality control samples, results, and limit checks
- 10. All sample and QC calculation equations
- 11. Copy or location of analytical method or Standard Operating Procedures (SOP) used for analysis
- 12. A listing of any deviations from analytical SOP and this protocol

Community Air Monitoring Branch

Within 90 days from receipt of the final results from NLB, CAMB will provide OEHHA/DPR with a report containing the following topics:

- 1. Personnel Contact List
- 2. Site Maps
- 3. Site Photographs
- 4. Site Descriptions and Measurements (site, sampler, GPS coordinates, inlet height, site-specific comments)
- 5. Sample Summary Table
- 6. Field Data Sheets
- 7. Table of ambient concentration values of all samples
 - a. Calculation of average flow values and laboratory analytical results
 - b. Samples out of the flow and time criteria will be flagged
 - i. Sampling time must be 24±1 hours
 - ii. Sample flow rate must start at setpoint $\pm 10\%$ and end at setpoint $\pm 20\%$
- 8. Flow Meter Certification Report(s)

Laboratory Standard Operating Procedures

Standard Operating Procedure for the Analysis of Trichloronitromethane (Chloropicrin) In Ambient Air Using Gas Chromatography/Mass Spectrometry

MLD075 Revision 1.0

Northern Laboratory Branch Monitoring and Laboratory Division

Approval Signatures	Approval Date
Manisha Singh, Ph.D., Chief Quality Management Branch	1/6/2023
<i>WPWerst</i> Michael Werst, Chief Northern Laboratory Branch	1/9/2023

Disclaimer: Mention of any trade name or commercial product in this standard operating procedure does not constitute endorsement or recommendation of this product by the California Air Resources Board. Specific brand names and instrument descriptions listed in the standard operating procedure are for equipment used by the California Air Resources Board's laboratory. Any functionally equivalent instrumentation is acceptable.

Table of Contents

1.	Scope1
2.	Summary of Method1
3.	Acronyms1
4.	Definitions2
5.	Interferences and Limitations5
6.	Personnel Qualifications and Training6
7.	Safety Requirements
8.	Hazardous Waste 6
9.	Equipment and Supplies7
10.	Reagents
11.	Standards Preparation8
12.	Media and Sample Storage 11
13.	Sample Extraction and Analysis11
14.	Quality Control
15.	Calculations
16.	Data Management and Reporting21
17.	Maintenance and Repairs22
18.	References
19.	Revision History23

Table 1. Chloropicrin Stock and Intermediate Standards Preparation, page 9 Table 2. Chloropicrin Calibration Standard Preparation, page 10 Table 3. MS Tuning Guide, page 16 Table 4. Quality Control Corrective Actions, page 16

Figure 1. XAD Sorbent Tube, page 12

Standard Operating Procedure Analysis of Trichloronitromethane (Chloropicrin) in Ambient Air Using Gas Chromatography/Mass Spectrometry

1. Scope

This standard operating procedure describes the determination of trichloronitromethane (chloropicrin) in ambient air samples using a gas chromatograph/mass spectrometer (GC/MS) or gas chromatograph/triple quadrupole mass spectrometer (GC/MS/MS). The procedure is for the analysis of chloropicrin collected on XAD-4 sorbent tubes. This Standard Operating Procedure (SOP) is used in conjunction with the Northern Laboratory Branch (NLB) Laboratory Quality Control Manual (QCM).

2. Summary of Method

Air samples are collected on 600 milligrams of XAD-4 in glass sorbent tubes. The samples are stored at or below 5 degrees Celsius (°C) until extracted with 4.0 mL of pesticide grade ethyl acetate. The extract is analyzed by a GC/MS with a split/splitless inlet in the selected ion monitoring (SIM) mode. Alternatively, a GC/MS/MS with a Programmable Temperature Vaporizing (PTV) inlet in the selected reaction monitoring (SRM) mode may be used. Sample analysis and quantitation uses an external standard method for instrument calibration.

3. Acronyms

Acronym or Term	Definition	
0°C	Degrees Celsius	
CARB	California Air Resources Board	
CCV	Continuing Calibration Verification	
CS	Control Standard	
DPR	Department of Pesticide Regulation	
El	Electron Ionization	
EQL	Estimated Quantitation Limit	
GC/MS	Gas Chromatography/Mass Spectrometry	
GC/MS/MS	Gas Chromatograph/Triple Quadrupole Mass	
90/10/10/0	Spectrometer	
LCS	Laboratory Control Spike	
LIMS	Laboratory Information Management System	
LOQ	Limit of Quantitation	

Acronym or Term	Definition	
m	Meter	
MDL	Method Detection Limit	
mg/mL	Milligrams per Milliliter	
MLD	Monitoring and Laboratory Division	
mm	Millimeter	
ng/mL	Nanograms per Milliliter	
NLB	Northern Laboratory Branch	
OLS	Organics Laboratory Section	
PFTBA	Perfluorotributylamine	
PS	Chloropicrin (military designation)	
PTV	Programmable Temperature Vaporizing	
QC	Quality Control	
QCM	Quality Control Manual	
RPD	Relative Percent Difference	
SDS	Safety Data Sheet	
SIM	Selected Ion Monitoring	
SOP	Standard Operating Procedure	
SRM	Selected Reaction Monitoring	
μg	Microgram	
UHP	Ultra-High Purity	
μm	Micrometer	

4. Definitions

- 4.1. ANALYTICAL BATCH A set of prepared samples (i.e., extracts) analyzed together as a group in an uninterrupted sequence.
- 4.2. BLANK Sample media, solvent, or reagent that has not been exposed to the sample stream in order to monitor contamination during sampling, transport, storage, extraction, and/or analysis. The blank is subjected to the same analytical processes as samples.
 - 4.2.1. METHOD BLANK An XAD-4 sorbent tube that is free of analytes of interest. The sorbent tube is extracted in the same manner and at the same time as samples and is taken through the entire sample analysis process. It is used to monitor the laboratory preparation and analysis systems for interferences and contamination.
 - 4.2.2. SOLVENT BLANK An aliquot of solvent analyzed with each batch of samples to indicate any contamination or artifacts that may come from the reagents and analytical steps.
 - 4.2.3. FIELD BLANK An XAD-4 sorbent tube that goes out to the field

and is treated as a sample where it will be connected to a sampler, disconnected without pulling an air sample, then returned to the laboratory. Field blanks are treated like samples in the laboratory. The field blank identifies any potential contamination that may occur from ambient conditions, sample handling, or other sources that samples may be exposed to.

- 4.2.4. TRIP BLANK An unopened XAD-4 sorbent tube which travels to the field and then back to the laboratory. Trip blanks are treated like samples in the laboratory. The trip blank may aid in identifying any potential issues arising through transportation which could affect the sorbent.
- 4.3. BREAKTHROUGH Breakthrough occurs when analytes of interest migrate through the XAD-4 sorbent tube from the primary sorbent bed to the secondary sorbent bed.
- 4.4. BREAKTHROUGH ANALYSIS Breakthrough analysis refers to analysis of the secondary sorbent bed of the XAD-4 sorbent tube to determine if any amount of sample was not retained in the primary sorbent bed. One breakthrough analysis is done per every ten samples, at a minimum. Breakthrough analysis is also done for any samples which exceed the breakthrough threshold limit.
- 4.5. BREAKTHROUGH THRESHOLD LIMIT The concentration found in the primary sorbent bed that would require analysis of the secondary sorbent bed. The breakthrough threshold limit is set at > 500 ng/mL. Therefore, detections at over 500 ng/mL require analysis of the secondary sorbent bed to check for breakthrough.
- 4.6. CALIBRATION CURVE The graphical relationship between the known values, such as concentrations, of a series of calibration standards and their instrument response.
- 4.7. CARRYOVER Contamination from an adjacent sample causing false or inaccurate results in the subsequent sample(s).
- 4.8. CARRYOVER CHECK A blank which is analyzed after a high concentration sample to determine if any carryover may have occurred.
- 4.9. COLLOCATED SAMPLE A sample used to assess total precision (sampling and analysis) which is located within a specified radius of the primary sampler. The collocated sampler must be identical in configuration and operation to the primary sampler. The collocated sample is processed identically to the primary sample.

- 4.10. CONTINUING CALIBRATION VERIFICATION (CCV) A midpoint calibration standard analyzed, at a minimum, once per every ten samples and at the end of the analytical batch to confirm the stability of the instrument calibration.
- 4.11. CONTROL STANDARD (CS) A midpoint standard analyzed after the calibration curve. The CS should be prepared with a stock standard that is different from what was used to prepare the calibration standard, when available. The CS must be analyzed at a minimum of once per analytical batch.
- 4.12. DILUTION Dilution is the process of reducing the concentration of a solute in solution, usually by adding more solvent. Dilutions are required when any sample concentration exceeds the calibrated linear range by more than ten percent. After diluting, the concentration should fall within the calibrated linear range. Multiple dilutions are sometimes necessary.
- 4.13. ESTIMATED QUANTITATION LIMIT (EQL) The lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions. The EQL is generally five to ten times the MDL. The EQL may be used as the reporting limit if requested by the client.
- 4.14. EXTRACTION BATCH A batch of samples and associated quality control (QC) which are taken through the extraction process together. The extraction batch is typically analyzed in one analytical batch.
- 4.15. HOLD TIME The maximum amount of time a sample or extract may be stored prior to performing an operation. Extraction hold time is from sample collection to extracting the sample. Analytical hold time is from sample extraction to analysis.
- 4.16. INTERFERENCE Discrete artifacts or elevated baselines from solvents, reagents, glassware, and other sample processing hardware that may cause misinterpretation of the chromatographic data. Other interferences include matrix effects, which may cause the target compound to recover higher or lower than the expected value.
- 4.17. METHOD DETECTION LIMIT (MDL) A statistically derived value that is defined as being the minimum concentration of a substance that can be measured and reported with 99 percent confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix (including sample media) containing the analyte. The procedure used to determine the MDL is documented in the NLB's Quality Control Manual.

- 4.18. REPLICATE A second analysis of a randomly chosen sample within an analytical batch.
- 4.19. REPORTING LIMIT (RL) A value that is equivalent to or greater than the limit of quantitation. Detections below the reporting limit are typically reported as "< RL" unless otherwise requested by the client.
- 4.20. SPIKE A known concentration of a standard containing target analytes is added to sampling media or reagent. Spike recoveries indicate efficiency of laboratory or field procedures.
 - 4.20.1. FIELD SPIKE An XAD-4 sorbent tube is spiked with a known concentration of target analyte that goes out to the field and is treated as a sample, where it will be connected to a collocated sampler and sampled as normal to check for matrix effects. The unspiked collocated sample results are subtracted from the field spike results to determine field spike percent recovery.
 - 4.20.2. LABORATORY CONTROL SPIKE (LCS) An XAD-4 sorbent tube is spiked with a known concentration of target analyte that is prepared, extracted, and analyzed with and in the same manner as samples. LCS recoveries indicate extraction efficiency.
 - 4.20.3. TRIP SPIKE An XAD-4 sorbent tube is spiked with a known concentration of target analyte, shipped along with sampling media, and is taken into the field, but returned unopened to the laboratory. Trip spike recoveries indicate if samples may have been affected by shipping conditions.

5. Interferences and Limitations

- 5.1. Interferences may be caused by contaminants in the filters, sampling media, solvents, sample extraction apparatus, filtration apparatus, and glassware. A method blank is extracted and analyzed with each set of samples to monitor these possible sources of contamination.
- 5.2. The analytical system may become contaminated when samples containing high compound concentrations are analyzed. If there is suspected carryover from a high concentration sample, the succeeding sample(s) is reanalyzed to verify results.
- 5.3. High boiling point compounds trapped on the column may cause baseline shifting, or the appearance of broad, extraneous "ghost" peaks. The column should be baked out to remove these contaminants prior to analyzing samples. The bake out temperature must not exceed the column's maximum operating temperature.

6. Personnel Qualifications and Training

Prior to performing this method, new personnel must be trained by staff with detailed knowledge of this method. Personnel must be trained to understand the program's requirements per any applicable State and federal regulations and guidance, and this SOP. Personnel will also be trained on how to safely and properly operate the equipment needed to perform the method, the quality assurance components, and Laboratory Information Management System (LIMS) functionality pertaining to the program.

Personnel will provide an initial demonstration of capability prior to performing this method on real-world samples (i.e., data for record).

Training will be documented and maintained by the laboratory supervisor.

7. Safety Requirements

All personnel must follow the general health and safety requirements found in Northern Laboratory Branch's (NLB) Chemical Hygiene Plan.

Chloropicrin is used in agriculture as a soil fumigant. It has also been used as a chemical warfare agent (military designation is PS) and a riot control agent. Chloropicrin is an irritant with characteristics of a tear gas and has an intensely irritating odor. Inhalation of 1 part per million (ppm) causes eye irritation and can warn of exposure. The analyst should refer to the safety data sheets (SDS) for additional information regarding chemical properties and precautions.

The handling and preparation of samples, extracts, and standards must be conducted in a hood. Proper personal protective equipment must be worn, including neoprene or nitrile gloves, safety glasses, and a laboratory safety coat. Analysts should ensure that engineering and air quality controls are active and operating properly to reduce or eliminate off-gassing from instrument exhaust ports.

This method uses high pressure gases. Refer to safe handling practices regarding compressed gases when moving and installing the cylinders.

The GC and MS have heated zones which may cause burns. Avoid contact with these zones and devices when in operation and make certain they are deenergized and at ambient temperature prior to servicing.

8. Hazardous Waste

As chloropicrin waste is categorized as acutely toxic, the waste must be disposed of within 90 calendar days upon accumulation of 1.0 kg. The NLB Health &

Safety Coordinator should be notified upon accumulation of 1.0 kg (approximately two pounds) of this waste. Waste consists of liquid chloropicrin and unanalyzed XAD-4 sorbent tubes used to capture chloropicrin. Chloropicrin waste should be stored in the waste containers provided for this purpose. The containers should be properly labeled with appropriate hazardous waste labels indicating the contents and start date of accumulation.

9. Equipment and Supplies

- 9.1. Gas Chromatograph: system with programmable oven, electronic pressure control for capillary columns, heated injector, and automated liquid injector
- 9.2. Column: Restek Rtx-200, 60 meter, 320 μm inner diameter, 0.5 μm film thickness, or equivalent. For GC/MS/MS analysis, a Thermo Fisher TG-5SILMS 30 m x 0.25 mm x 0.25 μm column (or equivalent) may be used
- 9.3. Detector: single quadrupole Mass Selective Detector or triple quadrupole Mass Selective Detector
- 9.4. XAD-4 sorbent tubes: 600/200 mg custom tube, SKC. Two 400/200 mg XAD-4 tubes such as SKC, Incorporated (catalog # 226-175) may be used in tandem if the custom tube is not available
- 9.5. Syringe Filters: Disposable PTFE 0.2 μm filter, such as VWR Cat. No. 28145-491
- 9.6. Disposable Syringes: such as BD disposable syringes (part # 309656) 3 5 mL volume
- 9.7. 4 mL glass storage vials with Teflon lined screw caps such as VWR (part # 66009-876)
- 9.8. Screw-cap test tubes, such as Globe Scientific part # 89497-770
- 9.9. Ultrasonic bath: capable of temperature programing such as Branson model 8510
- 9.10. 8 mL glass extraction vials such as Kimble Chase (part # 60940A-8)
- 9.11. Autosampler deactivated vials with cap such as National Kit 100-pack (part # CERT5000-82W)
- 9.12. Auto sampler flat bottom inserts such as VWR 0.4 mL 1000-pack (Cat. No. 82028-454)

- 9.13. 25 mL volumetric flasks
- 9.14. Analytical balance capable of weighing as low as 0.1 mg
- 9.15. Eppendorf electronic pipettes: 100-5000 µL volume ranges
- 9.16. Disposable Pasteur pipettes: 5 ¾" such as Duran Wheaton Kimble (part # 63A54)
- 9.17. Tweezers
- 9.18. Hand-held glass cutter
- 9.19. Disposable nitrile or neoprene gloves to handle organic solvents
- 9.20. Hamilton microliter syringes (or equivalent): 10 μL, 50 μL, and 250 μL volume ranges
- 9.21. Refrigerator/freezer capable of maintaining a consistent temperature at or below 5°C

10. Reagents

- 10.1. Ethyl acetate solvent, pesticide grade or better, CAS No 141-78-6
- 10.2. Chloropicrin, such as Chem Service, 98.8 percent (part # N-11452-1G, neat standard)
- 10.3. Perfluorotributylamine (PFTBA) tune solution
- 10.4. Helium Ultra-High Purity (UHP), 99.999 percent for use as the GC column carrier gas
- 10.5. Argon, (UHP), 99.999 percent for use with the triple quadrupole MS

11. Standards Preparation

All standard solutions are prepared using ethyl acetate (pesticide grade or better) as the solvent. The solutions are stored at or below 5°C until used. Standard solutions are equilibrated to room temperature before use, and returned to cold storage at the end of the work day.

Neat standards and standards purchased in solution are valid up to the manufacturer's expiration date. Working standards expire one year from preparation date, but are not to exceed the expiration date of the neat or parent solution. Standard preparation is documented in a logbook.

- 11.1. Calibration Standards
 - 11.1.1. A 1.0 mg/mL chloropicrin stock standard is prepared by weighing out approximately 0.025 g neat chloropicrin in a 25 mL volumetric flask and filling to volume with ethyl acetate.

Intermediate A, a 50,000 ng/mL intermediate standard, is made using a 1.25 mL aliquot of the 1.0 mg/mL stock solution in a 25 mL volumetric flask and filling to volume with ethyl acetate. Intermediate B, a 5,000 ng/mL intermediate standard, is made using a 2.5 mL aliquot of Intermediate A in a 25 mL volumetric flask and filling to volume with ethyl acetate. Intermediate C, a 500 ng/mL standard, is made using a 2.5 mL aliquot of Intermediate B in a 25 mL volumetric flask. Volumes may be adjusted to accommodate for the concentration of the stock standard solution and/or if smaller volumetric flasks are used. See Table 1 for a summary.

Stock Standard (ng/mL)	Amount	Final Volume (mL)	Final Concentration
Stock	0.025 g neat	25	1.0 mg/mL
Intermediate A	1.25 mL of stock	25	50,000 ng/mL
Intermediate B	2.5 mL of Intermediate A	25	5,000 ng/mL
Intermediate C	2.5 mL of Intermediate B	25	500 ng/mL

 Table 1. Chloropicrin Stock and Intermediate Standards

 Preparation

11.1.2. Calibration standards: Table 2 lists calibration curve standard preparation. Five calibration levels ranging from 2 ng/mL to 500 ng/mL is recommended. These standards are made by spiking aliquots of intermediate standard solution onto XAD-4 sorbent tubes. The tubes are extracted with 4.0 mL of ethyl acetate and sonicated at ambient temperature for one hour. The extracts are filtered and stored at or below 5°C.

Calibration Level	Standard	Spike Amount (µL)	Extraction Volume (mL)	Final Concentration (ng/mL)
1	Intermediate C	16	4	2
2	Intermediate B	8	4	10
3	Intermediate B	40	4	50
4	Intermediate A	8	4	100
5	Intermediate A	40	4	500

Table 2. Chloropicrin Calibration Standard Preparation

11.2. Control Standard (CS)

A mid-level chloropicrin control standard is prepared in the same manner as described in section 11.1, using a second source standard. If a neat standard is used to make the CS, preparation may follow this scheme: prepare a 1.0 mg/mL CS stock in the same manner as described in section 11.1.1, using a second source standard. A 10,000 ng/mL CS intermediate is prepared by diluting 0.25 mL of CS stock to 25 mL in a volumetric flask, using ethyl acetate as the diluent.

If a chloropicrin standard purchased in solution (such as ChemService item # S-11452B1-1mL, 100 μ g/mL) is used as the second source, prepare a CS intermediate at 8,000 – 10,000 ng/mL, using ethyl acetate as the diluent. Preparation may follow this scheme: add 0.20 mL of 100 μ g/mL chloropicrin solution to a 2.0 mL volumetric flask and bring to volume for a final concentration of 10,000 ng/mL, using ethyl acetate as the diluent.

A mid-level working CS (40 - 60 ng/mL) is prepared from the intermediate CS standard by spiking the appropriate amount onto an XAD-4 sorbent tube. The tube is extracted with 4.0 mL of ethyl acetate and sonicated at ambient temperature for one hour. The extract is filtered and stored at or below 5°C.

A CS is analyzed after the 5-point calibration curve. The CS criteria are based on established control limits.

11.3. Laboratory Control Spike (LCS)

A spiked 30 ng/mL LCS is prepared by spiking 24 μ L of Intermediate B onto an XAD-4 sorbent tube. The tube is extracted with 4.0 mL of ethyl acetate and sonicated at ambient temperature for one hour. The extract is filtered and stored at or below 5°C. One LCS is to be extracted and analyzed with every extraction batch.

11.4. Field Spikes and Trip Spikes

Prepare the appropriate number of field spikes and trip spikes, as required by field sampling protocol, by spiking 24 μ L of Intermediate B onto each XAD-4 sorbent tube. Properly label the XAD-4 sorbent tubes with the date, time, and description (either "field spike" or "trip spike"). Spiked tubes are placed in individual screw-top test tubes and stored at or below 5°C.

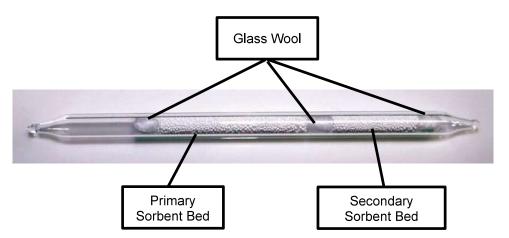
12. Media and Sample Storage

- 12.1. Media Storage Prior to sampling, unopened XAD-4 tubes are stored and shipped at ambient temperature.
- 12.2. Spiked Field QC Storage Spiked XAD-4 field QC tubes (field spikes, trip spikes) are stored at or below 5°C prior to sampling.
- 12.3. XAD-4 Sample Storage After sampling, all XAD-4 tubes are stored at or below 5°C until extraction.
- 12.4. Extract Storage After extraction, all extracts are stored at or below 5°C.

13. Sample Extraction and Analysis

All samples (primary and secondary sorbent beds) are extracted with 4 mL of ethyl acetate (pesticide grade or better).

- 13.1. Sample Preparation and Extraction
 - 13.1.1. Prior to sample analysis, remove the samples from cold storage and allow them to equilibrate to room temperature. Samples must be extracted within 28 days of collection.
 - 13.1.2. Obtain the necessary amount of 8 mL glass vials (one for each XAD-4 sorbent tube) and put them on a sampling tray. Label each one clearly with the appropriate standard or sample IDs for each sample.
 - 13.1.3. The custom XAD-4 sorbent tube is comprised of two sections separated by glass wool. The longer end (primary sorbent bed) contains 600 mg of XAD-4. It is used for sample analysis. The short end (secondary sorbent bed) contains 200 mg of XAD-4 and is used to test for sample breakthrough. One breakthrough (secondary sorbent bed) analysis should be done for every ten samples, at a minimum.


If custom 600/200 mg XAD-4 tubes are not available, 400/200 mg

MLD075 Revision 1.0 Approval Date: January 9, 2023 Page 12 of 23

tubes can be used. The XAD-4 400/200 tube is comprised of two sections separated by glass wool. The longer end contains 400 mg of XAD-4, and the shorter end contains 200 mg. 600 mg of XAD-4 is needed to trap chloropicrin when sampled at 24 hours using a flow rate of 0.1 L/min; therefore, both sections of the tube must be used to contain the sample. For breakthrough monitoring, a second XAD tube must be used in tandem with the primary tube.

13.1.4. Remove the XAD-4 sorbent tube from the screw-top container. Remove the red cap from the end of the primary sorbent bed. Remove the glass wool plug using tweezers. If any of the glass wool contains XAD-4 sorbent, shake off the XAD-4 sorbent into the vial. The glass wool itself can be added to the vial if XAD-4 adheres to the wool. See Figure 1.

Figure 1. XAD Sorbent Tube

- 13.1.5. Pour the XAD-4 sorbent from the primary sorbent bed into its correspondingly labeled 8 mL glass vial.
- 13.1.6. Score the tube with the glass cutter just in front of the second section of glass wool and carefully break the tube. Using an automatic pipette, rinse the empty primary sorbent bed of the cut-off tube with 4 mL of ethyl acetate collecting the solvent in the 8 mL glass vial. Retain the secondary sorbent bed for breakthrough analysis, if needed.
- 13.1.7. If 400/200 mg XAD-4 tubes were used, then the 200 mg portion of the tube must be combined with the 400 mg section. Remove the glass wool dividing the 200 mg section of XAD and pour the XAD sorbent from the secondary sorbent bed into the 8 mL glass vial. Remove the final glass wool plug from the tube. Using an

automatic pipette, rinse the empty tube with 4 mL of ethyl acetate, collecting the solvent in the 8 mL glass vial.

- 13.1.8. Cap the vial securely.
- 13.1.9. If breakthrough analysis is being done, extract the breakthrough sorbent bed as described in sections 13.1.4 – 13.1.8 as a separate sample, using 4 mL of ethyl acetate. The breakthrough sorbent bed is either the 200 mg section of the custom tube, or the primary (400 mg section) sorbent bed of the tandem tube. Shake off any sorbent remaining in the glass wool into the 8 mL vial.
- 13.1.10. Prepare a method blank with every extraction batch by opening an unused, clean XAD-4 sorbent tube.
- 13.1.11. Prepare a LCS with every extraction batch by opening an unused, clean XAD-4 sorbent tube and spiking the XAD-4 sorbent with 24 μL of Intermediate B onto the primary sorbent bed.
- 13.1.12. Repeat steps 13.1.3 through 13.1.8 for the LCS, method blank, applicable field QC, and all samples scheduled for analysis.
- 13.1.13. Fill ultrasonic bath to fill line with water. Place all vials containing extracts in the bath and sonicate for one hour at ambient temperature.
- 13.1.14. Filter each extract into individual 4 mL glass vials using a disposable syringe and a disposable 0.20 μm syringe filter. Label each one clearly with the standard names and preparation dates for each sample.
- 13.1.15. Transfer approximately 250 μL of each extract into individual 1.5 mL auto sampler vials equipped with a 250 μL insert.
- 13.1.16. Randomly choose one sample extract as a replicate to be analyzed a second time. One replicate must be analyzed for every ten samples, at a minimum.
- 13.1.17. Transfer approximately 250 μL of the calibration standards and control standard into individual 1.5 mL auto sampler vials equipped with a 250 μL insert. The extracts and standards are now ready for analysis. If extracts cannot be analyzed on the day of extraction, store the extracts at or below 5°C.
- 13.1.18. All extracted samples must be analyzed within 60 calendar days

of extraction.

- 13.2. Sample Analysis
 - 13.2.1. Analytical Sequence

Each analytical run of ten or fewer samples must include bracketing standards, controls, replicates, and blanks as listed below. A 1.5 μ L injection volume is used for all analyses. The recommended order of analysis is as follows:

- Solvent blank
- Calibration standards
- Control standard
- Solvent blank
- Laboratory Control Spike
- Method Blank
- Samples (up to ten including breakthrough samples)
- Breakthrough analysis (one every ten or fewer samples)
- Replicate (one every ten or fewer samples)
- Solvent blank
- CCV (midpoint calibration standard)
- 13.2.2. Analytical Instrument Conditions

13.2.2.1 Single Quadrupole GC/MS with Split/Splitless Inlet GC:

- Injection port temperature: 200°C
- Splitless injection: split flow 50 mL/min, splitless time 1.0 min
- Purge flow: 5.0 mL/min, constant septum purge
- Vacuum compensation: on
- Gas saver flow: 5 mL/min
- Gas saver time: 2 min
- GC Temperature Program: Oven initial 60°C, hold 1 min Ramp to 130°C at 15°C/min Ramp to 250°C at 35°C/min Run time = 10 min
- Column Flow: Helium, constant flow at 2.38 mL/min
- Chloropicrin retention time (approximate): 4.58 min

MS:

- Mass Spectrometer: Electron Ionization Single Quadrupole
- MS transfer line temperature: 245°C

- Ion source temperature: 250°C
- Selective Ion Monitoring: chloropicrin: 116.9 (quantitation ion), 118.9, 120.9 (qualitative ions)

13.2.2.2 Triple Quadrupole GC/MS/MS with Programmable Temperature Vaporizing (PTV) Inlet GC:

- Splitless injection: split flow 26 mL/min, splitless time 1 min
- Purge flow: 5 mL/min, constant septum purge
- Vacuum compensation: on
- Gas saver flow: 5 mL/min
- Gas saver time: 2 min
- PTV inlet initial temperature: 70°C, hold 0.05 min
- Transfer: 14.5° C/s to 220°C, hold 0.05 min
- Cleaning: ramp at 14.5°C/s to 275°C, hold for 5min at 75 mL/min flow
- GC Temperature Program: Oven initial 40°C, hold for 0.5 min Ramp to 110°C at 15°C/min Ramp to 250°C at 35°C/min Run time: 10 min
- Column Flow: Helium, constant flow at 1.5 mL/min
- Chloropicrin retention time (approximate): 4.56 min

MS:

- Mass Spectrometer: Electron Ionization Triple Quadrupole
- MS transfer line temperature: 245°C
- Ion source temperature: 250°C
- Selective Reaction Monitoring (SRM): chloropicrin 116.9 81.9 (quantitation ion), 118.9 83.9 (qualitative ion)
- Collision energy: 26

Instrument tuning is done using the software parameters detailed on the Dashboard screen. Table 3 shows a list of tunes available for this analysis and recommended frequency. Tuning is done prior to the analytical sequence.

Tune Type	Tune Description	Frequency
EI Diagnostics Only	Runs complete diagnostics and generates report. No tuning is performed.	Used to check and troubleshoot MS
El Full Tune	Complete EI Tuning. Tunes and sets detector gain to 3 x 10 ⁵ .	After cleaning the source, or if El Tune fails. Follow with El Tune
El Tune	Tunes resolution, mass, lenses, adjusts detector sensitivity. Does not tune detector gain.	Every six months, or if Daily Tune Check fails. Follow with Daily Tune Check
Daily Tune Check	Checks mass, performs leak check and generates report with gain from detector sensitivity tune.	Daily

Table 3. MS Tuning Guide

14. Quality Control

Several types of QC samples are analyzed to ensure and assess the quality of the data. These QC samples, acceptance criteria, and corrective actions are described in Table 4. If QC results do not meet criteria, corrective action must be taken.

QC Type	Frequency	Criteria	Corrective Action
Extraction Hold Time	All samples	Store samples at or below 5°C until extraction. Extract within 28 days from collection.	Flag, document, and report.
Analytical Hold Time	All sample and QC extracts	Store extracts at or below 5°C until analysis. Analyze within 60 days from extraction.	Flag, document, and report.

MLD075 Revision 1.0 Approval Date: January 9, 2023 Page 17 of 23

QC Type	Frequency	Criteria	Corrective Action
Method Blank	One per extraction batch at a minimum	<rl< td=""><td>Check instrument and method materials for possible contamination. Reanalyze the entire extraction batch. If the method blank is still outside criteria, then evaluate sample results. When sample results are less than ten times higher than method blank results, results are invalidated for those samples associated with the method blank.</td></rl<>	Check instrument and method materials for possible contamination. Reanalyze the entire extraction batch. If the method blank is still outside criteria, then evaluate sample results. When sample results are less than ten times higher than method blank results, results are invalidated for those samples associated with the method blank.
Solvent Blank	One per analytical batch at a minimum	<rl< td=""><td>Check instrument and method materials for possible contamination (i.e., carryover, solvent contamination). Reanalyze entire analytical batch if needed. If the method blank meets criteria and there are no analytical issues, report results.</td></rl<>	Check instrument and method materials for possible contamination (i.e., carryover, solvent contamination). Reanalyze entire analytical batch if needed. If the method blank meets criteria and there are no analytical issues, report results.
Field Blank	Client request or field protocol	<rl< td=""><td>Reanalyze to confirm results. Investigate if still outside criteria. Report results if no analytical issues.</td></rl<>	Reanalyze to confirm results. Investigate if still outside criteria. Report results if no analytical issues.
Breakthrough Analysis	One per ten samples at a minimum; also done for high concentration samples (>500 ng/mL)	any chloropicrin detected in the secondary sorbent bed is ≤ RL or ≤ 5% of the concentration in the primary sorbent bed, whichever is greater	Reanalyze breakthrough bed to confirm breakthrough. If reanalysis confirms breakthrough, flag, document, and report.
Initial Calibration	Minimum of five calibration levels prior to sample analyses	R² ≥ 0.96 using a quadratic fit	Reanalyze. Prepare new calibration standards if criteria still not met. Once criteria is met, reanalyze entire analytical batch.

MLD075 Revision 1.0 Approval Date: January 9, 2023 Page 18 of 23

QC Type	Frequency	Criteria	Corrective Action
Carryover Check	After analysis of high concentration sample (>500 ng/mL)	<rl< td=""><td>Assess subsequent sample. If chloropicrin is not detected, no further action is needed. If chloropicrin is ≥ the reporting limit, reanalyze the sample to confirm results are not biased high due to contamination from analysis of preceding high concentration sample. If reanalysis results meet replicate criteria, report results. If not, analyze solvent blanks to clean system. Reanalyze subsequent samples once system is clean.</td></rl<>	Assess subsequent sample. If chloropicrin is not detected, no further action is needed. If chloropicrin is ≥ the reporting limit, reanalyze the sample to confirm results are not biased high due to contamination from analysis of preceding high concentration sample. If reanalysis results meet replicate criteria, report results. If not, analyze solvent blanks to clean system. Reanalyze subsequent samples once system is clean.
Collocated Samples	Per client request (typically 10% of field samples) or field protocol	Relative Percent Difference (RPD) ± 25% for detections > 5 x RL	Verify results by reviewing data. Report results. Notify client if outside criteria.
Continuing Calibration Verification (CCV)	Mid-point calibration standard. Analyzed after ten or fewer samples and at end of analytical batch	Ending and bracketing CCV must be within 20% of expected value.	Reanalyze CCV that failed and all preceding samples that are not bracketed by CCV that met criteria. Prepare new CCV if criteria still not met. Reanalyze entire analytical batch with new CCV.
Control Standard (CS)	After calibration	CS must fall within established control criteria as described in the QCM	Reanalyze CS. Prepare new CS if criteria still not met. Reanalyze entire analytical batch with new CS.

QC Type	Frequency	Criteria	Corrective Action				
Replicate	One per ten or fewer samples in analytical batch	RPD ± 25% for detections > 5 x RL	Reanalyze replicate and all associated samples within bracketing standards. If still outside criteria, investigate and correct issues. Reanalyze. Invalidate all samples in analytical batch if replicate fails again.				
Laboratory Control Spike (LCS)	One per extraction batch	70-130% of expected value	Reanalyze LCS with the entire analytical batch. If the LCS still does not meet criteria, and all other QC passes, further investigation is required.				
Field Spike	Per client request or field protocol	70-130% of expected value	Reanalyze to confirm results. Investigate for possible lab issues if still outside criteria. Report results if no analytical issues are found.				
Field Spike Storage	NA	≤5°C when not on the sampler	Flag, document, and report.				
Trip Spike Storage	NA	≤5°C	Flag, document, and report.				
Trip Spike	Per client request or field protocol	70-130% of expected value	Reanalyze to confirm results. Investigate for possible lab issues if still outside criteria. Report results if no analytical issues are found.				

MLD075 Revision 1.0 Approval Date: January 9, 2023 Page 20 of 23

QC Type	Frequency	Criteria	Corrective Action
MDL Verification	Annually and when major maintenance or major changes are done	 Minimum of seven replicates are required Must meet criteria of MDL < Spike Concentration < 10x MDL MDL recoveries must be within 50-150% of expected concentrations 	Prepare and analyze another set of MDL replicates. If the MDL criteria is still not met, the MDL may be accepted with justification and management approval. This must be documented and placed in the MDL data package.

Table 4. Quality Control Corrective Actions

15. Calculations

15.1. Chloropicrin stock standard concentration is calculated as:

15.2. Intermediate standard concentrations are calculated as:

$$\frac{\text{stock concentration } \left(\frac{mg}{mL}\right) \text{ x volume added } (mL) \text{ x } \left(\frac{1000 \ \mu g}{mg}\right) \text{ x } \left(\frac{1000 \ ng}{\mu g}\right)}{\text{final volume } (mL)}$$

15.3. Calibration, control, and LCS standard concentrations are calculated as:

 $\frac{\text{concentration of intermediate standard } \left(\frac{ng}{mL}\right) x \text{ amount spiked } (\mu L) x \left(\frac{mL}{1000 \ \mu L}\right)}{4 \ mL \ extraction \ volume}$

15.4. Relative Percent Difference (RPD) between two results is calculated as:

$$RPD = \frac{|X1 - X2|}{(X1 + X2)/2} \ x \ 100\%$$

Where:

X1 = first measurement value

X2 = second measurement value

15.5. EQL is calculated as:

$$EQL in ng/sample = 5 x MDL \left(\frac{ng}{mL}\right) x volume extracted \left(\frac{mL}{sample}\right)$$

$$EQL in ng/m^{3} = 5 x \frac{MDL \left(\frac{ng}{mL}\right) x \text{ volume extracted } \left(\frac{mL}{sample}\right)}{sampling \text{ volume } (m^{3})}$$

Where: MDL = MDL value in ng/mL units volume extracted = 4 mL/sample sampling volume (flow rate is 0.1 L/min): 24 hrs. = 144 liters = 0.144 m³

15.6. Field spike recoveries are calculated as:

$$\left(\frac{(field spike recovered amount - collocated sample recovered amount)}{spiked amount}\right) x 100\%$$

15.7. LCS recoveries are calculated as:

$$\left(\frac{LCS \ recovered \ amount}{spiked \ amount}\right) \ x \ 100\%$$

15.8. Trip spike recoveries are calculated as:

$$\left(\frac{trip \ spike \ recovered \ amount}{spiked \ amount}\right) \ x \ 100\%$$

15.9. The concentrations of analyzed samples are initially reported in ng/mL. Ambient air concentrations are reported as ng/sample and are calculated as:

raw concentration
$$\left(\frac{ng}{mL}\right) \times \frac{4 \ mL}{sample} = \frac{ng}{sample}$$

16. Data Management and Reporting

Data management consists of samples logged into LIMS, documentation of unusual occurrences and their resolutions, creation of data packages (monthly, amendments, and special projects) for peer review and management approval, submittal of data to clients, and archival procedures for sample media and respective chains of custody. All anomalies, corrective actions, and management approved SOP deviations must be documented in the chemist's logbook, monthly QC report, and final data report. Program and maintenance notebooks and/or logbooks are to be kept with the instrumentation.

- 16.1. After data acquisition, the raw data files are processed by the analytical software to produce result files. The result files contain quantitation information such as peak areas and retention times, along with concentration and instrumentation information.
- 16.2. Peaks found in the chromatogram are verified by retention time and ion spectra to be identified correctly by the chemist. Integration of each peak is evaluated to ensure the software processed the data appropriately. Any improper integration will be amended and documented.
- 16.3. The instrument method is calibrated for both retention time and concentration during data processing using the integrated calibration standard areas. The concentrations of target compounds are based on the peak areas and the known analyte concentrations in the standards. Concentrations are calculated using the instrument standardization routine for samples, blanks, controls, and spikes. Retention times are checked to ensure no excessive peak shifting (beyond 0.3 minutes) has occurred. If shifting occurs, maintenance may need to be performed. Samples showing excessive retention time shifting will be reanalyzed.
- 16.4. The final results will be adjusted by an appropriate dilution factor (only if the sample was diluted; otherwise, the dilution factor would be 1.00) and reported in ng/sample.
- 16.5. All QC and sample results are verified by the chemist and then sent to the LIMS for archive and reporting. Data is reviewed by a peer chemist and approved by management before being released to the client.
- 16.6. Analyte concentrations will not be reported if below the RL unless otherwise requested by the client. (i.e., DPR may request 5x MDL be reported as "EQL" and concentrations between the MDL and EQL be reported as "Trace".) Instrument performance must be evaluated to ensure there is no matrix interference which could bias any reporting below the RL.

17. Maintenance and Repairs

Preventive maintenance is done on an annual basis on the GC/MS and repairs are done as needed by an approved vendor under contract to MLD or by experienced staff. All maintenance and repairs are documented in a logbook.

18. References

- 18.1. CARB NLB Laboratory Quality Control Manual Revision 5.0, December 7, 2021
- 18.2. CARB, "Chemical Hygiene Plan for Northern Laboratory Branch 1927 13th Street, 1900 14th Street," November 2021 or current.
- 18.3. SAS Standard Operating Procedure for Sampling and Analysis of Trichloronitromethane (Chloropicrin) in Application and Ambient Air using Gas Chromatography/Mass Spectrometry Revision 4, 12/01/2010
- 18.4. California Department of Food and Agriculture, Method EM 16 "Determination of Chloropicrin Desorbed from XAD-4 Resin Tubes" 10/14/1999

19. Revision History

SOP/Addendum Identification	Approval Date	Description of Change
MLD075 Revision 0.0, Analysis of Trichloronitromethane (Chloropicrin) in Ambient Air Using Gas Chromatography/Mass Spectrometry	September 28, 2017	SAS Standard Operating Procedure for Sampling and Analysis of Trichloronitromethane (Chloropicrin) in Application and Ambient Air using Gas Chromatography/Mass Spectrometry Revision 4. 12/01/2010
MLD075 Revision 1.0	January 9, 2023	Revised calibration standard preparation, sample hold time, extraction solvent, and instrument parameters.

Standard Operating Procedure for Analysis of Volatile Pesticide Compounds in Ambient Air Using Gas Chromatograph/Mass Spectrometer

MLD080 Revision 0.0

Northern Laboratory Branch Monitoring and Laboratory Division

Approval Signatures	Approval Date
Minh	1/17/2023
Manisha Singh, Ph.D., Chief	
Quality Management Branch	
MPWerst	1/20/2023
Michael Werst, Chief	
Northern Laboratory Branch	

Disclaimer: Mention of any trade name or commercial product in this standard operating procedure does not constitute endorsement or recommendation of this product by the California Air Resources Board. Specific brand names and instrument descriptions listed in the standard operating procedure are for equipment used by the California Air Resources Board's laboratory. Any functionally equivalent instrumentation is acceptable.

TABLE OF CONTENTS

1.	SCOPE	. 1
2.	SUMMARY OF METHOD	. 1
3.	ACRONYMS	. 2
4.	DEFINITIONS	. 3
5.	INTERFERENCES AND LIMITATIONS	. 6
6.	PERSONNEL QUALIFICATIONS AND TRAINING	. 7
7.	SAFETY REQUIREMENTS	. 7
8.	HAZARDOUS WASTE	
9.	EQUIPMENT AND SUPPLIES	. 9
10.	REAGENTS AND GASES	
11.	STANDARDS PREPARATION	11
12.	FIELD SPIKES AND TRIP SPIKES	
13.	SAMPLE STORAGE AND HOLD TIME	14
14.	BLANK PREPARATION	15
15.	SAMPLE PREPARATION	15
16.	ANALYSIS	16
17.	QUALITY CONTROL	
18.	CALCULATIONS	21
19.	DATA MANAGEMENT AND REPORTING	22
20.	MAINTENANCE AND REPAIR	
21.	REFERENCES	23
22.	APPENDICES	24
23.	REVISION HISTORY	24
	1. Acronyms used in this SOP	
	2. Conditions that give 17 g/m3 absolute humidity	
	3. MITC Stock and Intermediate Standards Preparation	
	4. Calibration Levels	
Table	5. Quality Control Corrective Actions	18

Standard Operating Procedure for Analysis of Volatile Pesticide Compounds in Ambient Air Using Gas Chromatograph/Mass Spectrometer

1. SCOPE

This method describes the procedures followed by Monitoring and Laboratory Division (MLD) staff to analyze volatile pesticides in ambient air samples using a gas chromatograph/mass spectrometer (GC-MS). The method is based on Environmental Protection Agency (EPA) method TO-17. The following list of compounds have been validated for this method.

Compounds	Reporting Limit (RL), ng / sample	Chemical Abstract Service (CAS) Number
cis-1,3-Dichloropropene	8.88	10061-01-5
trans-1,3-Dichloropropene	8.88	10061-02-6
Methyl Isothiocyanate (MITC)	1.00	556-61-6

This standard operating procedure (SOP) was developed by staff in the Organic Laboratory Section (OLS) of the Northern Laboratory Branch (NLB).

2. SUMMARY OF METHOD

Air samples are collected on stainless steel sorbent packed thermal desorption (TD) tubes at sites potentially impacted by nearby pesticide application. The samples are stored at or below five degrees Celsius (°C) from collection until analysis. For analysis the tubes are capped, with specific autosampler caps, and placed into the thermal desorption system. The compounds are released by heating the tube in a back-flush flow of inert carrier gas followed by secondary trapping on the electrically cooled focusing trap within the system. The trapped compounds are then released by heating and back-flushing the sorbent trap onto the gas chromatography column where they are separated and subsequently identified and quantified by the mass spectrometer in the selected ion monitoring (SIM) mode.

3. ACRONYMS

Table 1. Acronyms used in this SOP			
Acronym or Term	Definition		
Do	degrees Celsius		
AMU	Atomic Mass Units		
CAS	Chemical Abstract Service		
CCV	Continuing Calibration Verification		
CS	Control Standard		
CS ₂	Carbon Disulfide		
EA	Ethyl acetate		
GC-MS	Gas Chromatograph-Mass Spectrometer		
ICAL	Initial calibration		
LIMS	Laboratory Information Management System		
LOQ	Limit of Quantitation		
M/Z	mass-to-charge ratio		
MDL	Method Detection Limit		
μL	Microliter		
MITC	Methyl Isothiocyanate		
MLD	Monitoring and Laboratory Division		
MSD	Mass Spectral Detector		
NLB	Northern Laboratory Branch		
NOAA	National Oceanic and Atmospheric Administration		
OLS	Organics Laboratory Section		
PFTBA	Perfluorotributylamine		
PPB	Parts per Billion by Mass		
PPBV	Parts per Billion by Volume		
PTFE	Polytetrafluoroethylene		
QC	Quality Control		
QCM	Quality Control Manual		
RH	Relative Humidity		
RL	Reporting Limit		
RPD	Relative Percent Difference		
RSD	Relative Standard Deviation		
SDS	Safety Data Sheet		
SIM	Selected Ion Monitoring		
SOP	Standard Operating Procedure		
TD	Thermal Desorption		
UHP	Ultra High Purity		

Table 1. Acronyms used in this SOP

4. **DEFINITIONS**

- 4.1. ANALYTICAL BATCH A set of samples analyzed together as a group in an uninterrupted sequence.
- 4.2. CALIBRATION CURVE The graphical relationship between the known values, such as concentrations, of a series of calibration standards and their instrument response.
- 4.3. CALIBRATION STANDARD A standard containing the target analytes at a known concentration obtained from a source other than that of the control standard (second source) or from a different lot number.
- 4.4. CARRYOVER Contamination from an adjacent sample causing false or inaccurate results in the subsequent sample(s).
- 4.5. CARRYOVER CHECK A system blank which is analyzed after a high concentration sample to determine if any carryover may have occurred.
- 4.6. CONTINUING CALIBRATION VERIFICATION (CCV) A mid-level standard containing the target analytes at a known concentration analyzed once per every ten samples and at the end of every sequence after sample analysis to confirm stability of the instrument.
- 4.7. COLLOCATED SAMPLE A sample used to assess total precision (sampling and analysis) collected within a specified radius of the primary sample. The collocated sampler must be identical in configuration and operation to the primary sampler. The collocated sample is processed identically to the primary sample.
- 4.8. CONTROL STANDARD (CS) A standard containing the target analytes at a known concentration obtained from a source other than that of the calibration standard (primary source) or from a different lot number. If a second source is not available, the standard may be prepared by a different person or on a different day. This control contains all target compounds and is used to maintain QC charts.
- 4.9. DILUTION Is the process of reducing the concentration of a solute in solution. Dilutions are required when any sample concentration exceeds the calibrated linear range by more than ten percent. After diluting, the concentration should fall within the calibrated linear range.

- 4.10. DUPLICATE A re-analysis of a sample within an analytical batch that is processed through the entire analytical method to show precision.
- 4.11. HOLD TIME The maximum amount of time a sample may be stored prior to performing an operation. Analytical hold time for tube analysis is from sample collection to analysis.
- 4.12. INTERFERENCE Discrete artifacts or elevated baselines from environmental factors that may cause systematic errors in measurement of the sample being analyzed or misinterpretation of the chromatographic data.
- 4.13. LIMIT OF QUANTITATION (LOQ) The minimum concentration or amount of an analyte that a method can measure with a specified degree of confidence. The LOQ is equal to five times the standard deviation of the replicate analysis from the method detection limit (MDL) determination/verification. LOQ is analyte and instrument specific.
- 4.14. METHOD DETECTION LIMIT (MDL) A statistically derived value that is defined as being the minimum concentration of a substance that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix (including sample media) containing the analytes of interest.
- 4.15. REPORTING LIMIT (RL) A number which data is not typically reported below. The RL may or may not be statistically determined and may be established by regulatory requirements or in conjunction with client or program needs. The RL is equivalent to or greater than the LOQ.
- 4.16. SPIKE A quality control sample employed to evaluate the accuracy of a measurement. A spike is prepared by adding a known amount of the target analyte(s) to an aliquot of the sample or to media prior to sampling. The recovery of a spike provides an indication of the efficiency of the analytical procedure for a given matrix. Spikes can be designated as field, laboratory, matrix, and trip spikes. Field spikes are used to assess matrix interferences.
- 4.17. STANDARD (calibration or control standard) A substance or material with properties believed to be traceable with sufficient accuracy to permit its use to evaluate the same property of another. It is a solution or substance commonly prepared by the analyst to establish a calibration curve or the analytical response function of an instrument.

- 4.18. SYSTEM / METHOD BLANK A cleaned sorbent tube used to monitor the laboratory analytical systems for interferences and contamination. These two QC types of blanks are prepared in the same manner (see Section 14), but are independent from one another.
- 4.19. FIELD BLANK A sorbent tube that goes out to the field and is treated as a sample where it will be connected to a sampler, disconnected without pulling an air sample, then returned to the laboratory. Field blanks are treated like samples in the laboratory. The field blank identifies any potential contamination that may occur from ambient conditions, sample handling, or other sources that samples may be exposed to. Field blanks are typically only done by client request.
- 4.20. TRIP BLANK An unopened sorbent tube which travels to the field and then back to the laboratory. Trip blanks are treated like samples in the laboratory. The trip blank may aid in identifying any potential issues arising through transportation which could affect the sorbent. Trip blanks are typically only done by client request.

5. INTERFERENCES AND LIMITATIONS

- 5.1. Note that during optimization and validation of this method certain conditions were found to impact recovery of the target compounds. These conditions were:
 - Sampling at temperatures above 35 °C.
 - Temperatures exceeding 35 °C are not expected in California during the November to February 'winter' pesticide spraying season.
 - If sampling exceeds this temperature limit then sample results will be flagged.
 - If sampling is expected to regularly exceed these temperatures then the sampling flow and/or duration should be reduced and recovery validated and documented prior to deployment.
 - Sampling at an absolute humidity above 17 g/m³.
 - Online moisture calculators such as those from the National Oceanic and Atmospheric Administration (NOAA) can be used to determine the absolute humidity based off the temperature and relative humidity.
 - The below Table 2 shows a range of conditions that give an absolute humidity of 17 g/m³.

Temperature	Relative Humidity
(°C)	(%RH)
20	100
25	74
30	57
35	43

Table 2. Conditions that give 17 g/m3 absolute humidity

- Checking the conditions for the samples is recommended before analysis to identify potentially impacted samples.
- If sampling has exceeded this humidity limit then sample results will be flagged.
- If the sampling conditions are expected to regularly exceed 17 g/m³ then the method should be adjusted and recovery validated and documented prior to deployment.
- 5.2. All target compounds are identified by their mass spectrum and retention times. Compounds having similar GC retention times may co-elute or have ion fragments at the same mass-to-charge (m/z) ratio as the target compound. This can lead to misidentification or inaccurate quantitation.

- 5.3. The analytical system may become contaminated when samples containing high compound concentrations are analyzed. If there is suspected carryover from a high concentration sample, additional system blanks should be analyzed and verified to have results below the RL prior to reanalyzing the succeeding sample(s).
- 5.4. High boiling point compounds trapped on the column may cause baseline shifting, or the appearance of broad, extraneous "ghost" peaks. The column must be baked out to remove these contaminants prior to analyzing samples if present. For example, run the column to usual top temperature and hold for at least 1 hour. The bake out temperature must not exceed the column's maximum operating temperature.

6. PERSONNEL QUALIFICATIONS AND TRAINING

Prior to performing this method, new personnel must be trained by staff with detailed knowledge of this method. Personnel must be trained to understand the program's requirements per any applicable State and federal regulations and guidance, and/or this SOP. Personnel must also be trained to safely and properly operate the equipment needed to perform the method, the quality assurance components, and Laboratory Information Management System (LIMS) functionality pertaining to the program. Personnel must provide an initial demonstration of capability prior to performing this method on real-world samples (i.e., data for record). Training will be documented and maintained by the laboratory supervisor.

7. SAFETY REQUIREMENTS

All personnel must follow the general health and safety requirements found in the NLB Chemical Hygiene Plan.

MITC is a breakdown product of metam sodium, metam potassium, and dazomet, which are non-selective soil fumigants used in agriculture. Acute inhalation could cause eye irritation, respiratory, or systemic effects. MITC is also a dermal sensitizer. The analyst should refer to the safety data sheets (SDS) for additional information regarding chemical properties and precautions.

- 7.1. The analyst must wear protective eyewear, lab coat, and nitrile gloves whenever working with liquid standards, solvents, and solutions. Solvents are flammable; standards are irritants, particularly to the eyes and skin, and possibly very toxic. Refer to the SDS for specifics regarding handling, as well as emergency procedures.
- 7.2. This method uses high-pressure gases. Follow safe handling practices (as per CARB Health and Safety training or equivalent) regarding compressed gases when moving and installing the cylinders. Use suitable equipment and protective devices, such as carts and safety shoes.
- 7.3. The TD, GC, and MS have heated zones (refer to applicable instrument manual(s) for specifics), which may cause burns. The cold trap is both heated and cooled. Avoid contact with these zones and devices when in operation and make certain they are de-energized or at ambient temperature prior to servicing by checking temperature gauges.

8. HAZARDOUS WASTE

MITC is classified as a strong lachrymator. All accumulated liquid waste must be stored in an approved waste container. Liquid waste is any form of liquid that is considered hazardous to humans, animals, fish, or the environment. The NLB Health & Safety Coordinator must be notified upon accumulation of 1.0 kg (approximately two pounds) of this waste. Waste consists of liquid MITC and unanalyzed resin tubes used to capture MITC. MITC waste must be stored in waste containers provided for this purpose. The containers must be properly labeled with appropriate hazardous waste labels indicating the contents and start date of accumulation.

Other hazardous waste associated with this analysis consists of used pump oil and solvents. Pump oil is exchanged when serviced, typically on an annual basis. The used oil is collected in a plastic container and stored in the chemical waste unit. Solvents for disposal are stored in suitable waste containers and should be properly labeled with the accumulation start date. Satellite accumulation containers must be disposed of within 1 year of the accumulation start date. The NLB Health & Safety Coordinator must be notified before the 1 year from the accumulation start date, or when the container is full and needs to be disposed, whichever comes first. Once the satellite container is full, it may be moved to the central hazardous waste storage area. It is stored there until removed by the contracted hazardous waste company for disposal.

9. EQUIPMENT AND SUPPLIES

- 9.1. Gas chromatograph with a programmable oven, electronic pressure control for capillary columns and heated injector.
- 9.2. Column: Restek Rtx-200, 60 meter, 320 μm inner diameter, 0.5 μm film thickness, or equivalent.
- 9.3. Detector: mass spectral detector (MSD).
- 9.4. Software: A data station for control of GC, MS plus storage and quantification of mass spectral data (see References Section 22 for details).
- 9.5. Refrigerator which can maintain a minimum low temperature of 4 °C.
- 9.6. Adsorbent cold trap, such as a Markes part no. U-T9TNX-2S cold trap, or equivalent.
- 9.7. Stainless steel sorbent tubes packed with a suitable sorbent(s) for the target compounds, such as Markes 'universal' tubes (part no. C3-AAXX-5266), or equivalent.
- 9.8. Brass storage caps for the sorbent tubes, ¼ inches Swagelok type brass fittings with Polytetrafluoroethylene (PTFE) ferrules.
- 9.9. Sample concentrator and sorbent tube auto-sampler, such as a Markes TD-100-xr, or equivalent.
- 9.10. Hamilton microliter (μL) syringes (or equivalent): 10 μL, 25 μL, 250 μL, and 1000 μL volume ranges.
- 9.11. Hamilton gas-tight syringes (or equivalent) with suitable needle tips: 50 mL and 500 mL.
- 9.12. Sorbent tube calibration standard loading rig, such as from Markes or equivalent.
- 9.13. Sorbent tube conditioner, such as Markes TC-20, or equivalent.
- 9.14. 4 mL glass storage vials with Teflon lined screw caps, such as VWR (part# 66009-876).

- 9.15. Ultrasonic bath: capable of temperature programing, such as Branson model 8510.
- 9.16. Volumetric Flasks: 5 mL, 10 mL, 25 mL, 50 mL, and 100 mL volume ranges.
- 9.17. Analytical balance capable of weighing as low as 0.1mg, with calibrated weight kit.
- 9.18. Eppendorf electronic pipettes: 100-5000 µL volume ranges.
- 9.19. Disposable Pasteur pipettes, 1.5 mL such as Baxter Scientific Products (part# P5200-2).
- 9.20. Tweezers.
- 9.21. Disposable nitrile or neoprene gloves to handle organic solvents.

10. REAGENTS AND GASES

Consult the latest version of NLB's Laboratory Quality Control Manual (QCM) for the calibration gas requirements.

- 10.1. Carbon disulfide 99.9+ percent, less than 100 parts ppb benzene such as EMD OmniSolv item # CX0396-6.
- 10.2. Ethyl acetate, pesticide grade or better such as EMD OmniSolv item # EX0242-1 or equivalent.
- 10.3. MITC, neat standard such as Chem Service (item # MET-12392A-1G) or equivalent. Two different lot numbers or sources if possible (for calibration and control standards).
- 10.4. Gas standards containing cis- and trans-1,3-dichloropropene, such as EPA TO-14/15 from Restek or AirGas at 100 ppbV. Two different lot numbers or sources if possible (for calibration and control standards).
- 10.5. Perfluorotributylamine (PFTBA) or MS tune solution.
- 10.6. Ultra High Purity (UHP) Helium, 99.999% for use as the GC column carrier gas.

10.7. UHP Nitrogen, 99.999% for use on the calibration standard loading rig and sorbent tube conditioner.

11. STANDARDS PREPARATION

All standard solutions are stored refrigerated at < 5 °C until used. The standard solutions are removed from the freezer and allowed to equilibrate to room temperature before use. Neat standards are valid up to the manufacturer's expiration date. Working standards expire one year from preparation date but not to exceed the expiration date of the neat standard.

For gas cylinders, the Certificate of Analysis shall reflect the actual analysis of the specific cylinder, as evidenced by cylinder number. The analytical uncertainty of each compound must be less than ±10% of the actual concentration.

Standards should not be used past the expiration date issued by the vendor unless stability can be verified against a non-expired standard. If used past the expiration, management approval and documentation comparing concentration to historical data is required.

11.1. Percent Carbon Disulfide (CS₂) in Ethyl Acetate (EA)

To prepare the 0.1 percent CS_2 in EA solution, partially fill a 500 mL volumetric flask with EA. Add 500 μ L CS_2 to the flask. Fill the flask to volume with EA and invert several times to mix. This solution is used for all MITC standard, QC, and sample preparations.

11.2. Calibration Standards

A 1,000 μ g/mL MITC stock standard is prepared by weighing out approximately 0.025 grams neat MITC in a 25.0 mL volumetric flask and filling to volume with 0.1 percent CS₂ in EA. Three intermediate standards are made using the preparation scheme in Table 3, with 0.1 percent CS₂ in EA as the diluent. Depending on the actual weight of neat MITC weighed out, the final concentrations may be adjusted accordingly.

Standards	Amount	Vol Flask Size (mL)	Final Concentration (µg/mL)
Stock	0.025 g	25.0	1,000
Intermediate A	0.25 mL of Stock	5.0	50
Intermediate B	0.5 mL of A	5.0	5
Intermediate C	0.5 mL of B	5.0	0.5

Table 3. MITC Stock and Intermediate Standards Preparation

For example, Intermediate B at 5 μ g/mL is made using a 0.5 mL aliquot of the 50 μ g/mL MITC Intermediate A in a 5 mL volumetric flask and filling to volume with 0.1 percent CS₂ in EA.

- 11.3. Control Standard (CS)
- 11.3.1. A CS stock standard is prepared in the same manner as described in Section 11.2, using a second source standard when possible. A 10 μg/mL CS intermediate is prepared by diluting a 10 μL aliquot of the CS stock to 1 mL, using 0.1 percent CS₂ in EA as the diluent. The CS standards may be prepared by a second analyst if a second source standard is not available.
- 11.3.2. A CS is analyzed after the calibration curve. The CS criteria are based on control limits, which are established as described in the NLB Quality Control Manual.
- 11.4. Injecting standards to sorbent tubes

Calibration standards: Table 4 lists suggested calibration curve levels, which can be adjusted as needed depending on expected sample concentrations. Both liquid and gas standards are injected to each sorbent tube.

Calibration Level	MITC Standard	Spike Volume for MITC standard (µL)	TO-15 Gas Standard (nominal 100 ppbV) Volume (mL)
1	C (0.5 µg/mL)	1.0	5
2	C (0.5 µg/mL)	2.0	10
3	B (5 μg/mL)	1.0	20
4	A (50 μg/mL)	0.5	200
5	A (50 μg/mL)	1	500

- 11.4.1. Liquid standards are injected before gaseous standards.
- 11.4.2. Liquid standards are introduced to the sorbent tube using a suitably sized (e.g., 10μ L) liquid syringe and the calibration standard loading rig.
- 11.4.3. Gaseous standards are introduced to the sorbent tube using a suitably sized gas tight syringe and the calibration standard loading rig.
- 11.4.4. Steps to use the calibration standard loading rig are as follows:
 - 11.4.4.1. Insert tube with grooved (sampling) end of the tube into the loading rig and hand tighten in place.
 - 11.4.4.2. Toggle on gas flow and using a flow meter set to approximately 150 mL/min.
 - 11.4.4.3. Fill syringe with desired volume of liquid/gas standard.
 - 11.4.4.4. Insert needle of the syringe through septum on the loading rig slowly until the front gauze of the tube is reached (which is felt through increased resistance).
 - 11.4.4.5. Retract the needle 1-2 mm and inject.
 - 11.4.4.6. Repeat previous 2 steps for additional gas/liquid standards.
 - 11.4.4.7. Leave tube attached and gas flowing for 2 minutes.
 - 11.4.4.8. Remove and cap tube.
 - 11.4.4.9. Turn off gas flow to the loading rig once finished.

12. FIELD SPIKES AND TRIP SPIKES

These spikes are prepared in the laboratory at client request only. Field spikes are sampled and analyzed with the un-spiked collocated sample. With the spiked and un-spiked sample, a percent recovery can be determined. The data obtained from these spikes can serve as an indication of matrix interferences.

- 12.1. All tubes used must be conditioned prior to use (see Section 14 for instructions).
- 12.2. Follow the standard loading procedure from Section 11 to prepare the appropriate number of field spikes and trip spikes, as required by the sampling protocol.
- 12.3. The tubes are capped and labelled with the date, time, and description (either "field spike" or "trip spike").
- 12.4. Store the tubes below 5°C.
- 12.5. The spiked and un-spiked tubes are analyzed on a GC-MS in the same manner as any other sample.
- 12.6. Spike samples are required to have the percentage recovery evaluated and the criteria can be found in Section 17, Table 5 of this SOP.

13. SAMPLE STORAGE AND HOLD TIME

- 13.1. Upon receipt of samples verify the temperature has been maintained below 5 °C, if not the sample is flagged in LIMS and analyzed.
- 13.2. Check the brass storage caps are securely fitted, if not then the sample is flagged in LIMS and analyzed.
- 13.3. The samples are stored refrigerated at < 5 °C until analysis.
- 13.4. Samples are analyzed within 30 days of sample collection.

14. BLANK PREPARATION

- 14.1. A method or system blank is accomplished by running a clean tube.
- 14.2. The TC-20 tube conditioner is used to clean/condition the sorbent tubes. The TC-20 can clean/condition up to 20 tubes at a time.
- 14.3. Conditioning at 300 °C for at least 90 minutes with a flow of 50 mL/min nitrogen.
- 14.4. For tubes due to be sent out as sampling media, including field blanks and trip blanks, a minimum of two tubes per cleaning batch is analyzed and verified to be < RL.
- 14.5. If tubes fail to meet the < RL requirement, they should be conditioned again. If samples are routinely at high levels then implementing a longer conditioning time is recommended.
- 14.6. The method/system blanks must meet the criteria summarized in Table 5 for samples to be analyzed and reported.

15. SAMPLE PREPARATION

- 15.1. Samples must be equilibrated to laboratory room temperature, with their storage caps still fitted, prior to analysis.
- 15.2. Remove the brass storage caps.
- 15.3. Fit the autosampler caps and place into the autosampler trays, noting the grooved end of the tube should be on the right side of the tray.
- 15.4. Create a sample/sequence list on the workstation computer for the samples to be analyzed.
- 15.5. Enable sample re-collection in the Markes TD sequence for entire analytical batch to allow for as needed future re-analyses.

16. ANALYSIS

- 16.1. Instrument Performance Check
 - 16.1.1. The MS must be tuned with calibration gas PFTBA to meet the tuning and standard abundance criteria prior to initiating any data collection. The detector is tuned using the Autotune program. The procedure and the criteria for the PFTBA tune can be found in the GC system manuals.
 - 16.1.2. The tune value, with regards to positions and abundance ratios of the tune m/z and their corresponding isotope m/z's, must be reviewed. Refer to applicable manual for specific criteria.
 - 16.1.3. The system must be checked for leaks and the electron multiplier voltage must be checked and evaluated. Corrective action must be performed if needed prior to analyzing samples. Refer to applicable manual for specific criteria.
 - 16.1.4. The tuning report must be saved and archived with associated sample data.
 - 16.1.5. Verify beginning QC meets criteria in Table 5 prior to analyzing samples.
- 16.2. Sample Concentration and Analysis
 - 16.2.1. Samples are introduced onto the sorbent trap under control of the thermal desorption equipment and method. These parameters are described in the Appendix OLS-MLD080-A1.
 - 16.2.2. After the sorbent trap has finished loading, it is dry purged with helium gas, heated, and the contents are transferred to the GC. The instrument conditions used are described in Appendix OLS-MLD080-A2.
 - 16.2.3. The ambient samples are analyzed using the same methods as used for the calibration and control standards.

16.3. Analytical Sequence

- 16.3.1. Each analytical run of 10 or fewer samples must include a PFTBA tune, initial calibration (ICAL), control standard, system and method blanks, duplicates and CCV.
- 16.3.2. Below is the required order of analysis for a valid batch:
 - PFTBA Tune
 - System Blank
 - Initial Calibration (ICAL)
 - Control Standard
 - Method Blank
 - Samples (up to 10)
 - Duplicate (one every 10 or fewer samples)
 - Method Blank
 - CCV (analyzed once per every ten samples and at the end of every sequence)

16.4. Instrument Method

A typical method is shown in the Appendix, OLS-MLD080-A1 and OLS-MLD080-A2.

17. QUALITY CONTROL

All QC, samples, duplicates, and additional injections must be analyzed within a 24-hour time period from the injection time of the valid ICAL for the batch to be considered valid and reportable.

Several types of QC samples are evaluated daily, annually, or as needed to verify the instrument is still under control and meet the required acceptance criteria. These are described in Table 5 below. If QC results are not met, corrective action(s) must be taken. Occasionally, deviations may be necessary which shall require documentation and management approval prior to use. These deviations must be documented on the data review checklist in the daily batch packet and final data packages.

MLD080 Revision 0.0 Approval Date: January 20, 2023 Page 18 of 26

Table 5: Quality Control Corrective Actions

QC Type	Frequency	Criteria	Corrective Action
PFTBA Tune	Analyze before the initial calibration.	Autotune done by instrument marks as passed and/or meets manufacturer's criteria.	 Check Air/Water, background and level of tune standard. Adjust parameters to improve sensitivity. Run a full tune followed by an Autotune. Clean source. Contact manufacturer if tuning continues to fail. No samples are analyzed.
Initial Calibration	Minimum of five calibration levels prior to sample analyses.	R² ≥ 0.98. Using a linear or quadratic fit.	 A linear or quadratic fit can be used, whichever gives the best accuracy across the points of the curve. If the calibration curve fails, re-analyze. Prepare new calibration standards if criteria not met. If calibration continues to fail, stop, and begin corrective actions to determine the cause of repeated failures (specifics include instrument maintenance and tube issues).
CCV	Analyzed after 10 or fewer samples and at end of the sequence.	Calculated concentration within ± 25% of expected and ± 0.300 minutes of the CCV level of the Initial Calibration.	 Reanalyze CCV that failed and all preceding samples that are not bracketed by CCV that met criteria. Prepare new CCV if criteria still not met. Reanalyze all samples with new CCV.
Control Standard	Analyzed once after the initial calibration.	Must fall within established control criteria as described in the QCM.	 Re-analyze prior to sample analysis once if 24-hour clock has not lapsed, report the second analysis if it is within criteria, and document the reanalysis on the run log and review checklist. Analyze another control standard or prepare new control standard and re-analyze. If the control standard fails for select compound(s) and the sample cannot be reanalyzed, those compounds are invalidated with NLB management approval. Document exceedances. Re-establish Control Limits.
System Blank	Analyzed before initial calibration.	<rl.< td=""><td> If initial system blank is equal to or above RL, additional system blanks can be analyzed to clear the analytical system of possible contamination. The cause of contamination is investigated; and resolved before the rest of the sequence is run. </td></rl.<>	 If initial system blank is equal to or above RL, additional system blanks can be analyzed to clear the analytical system of possible contamination. The cause of contamination is investigated; and resolved before the rest of the sequence is run.
Method Blank	Run after the control standard and before the CCV.	<rl.< td=""><td> If the method blank result is equal to or higher than the RL, the following apply: If sample results are at least 10x higher than the blank result, it is documented on the daily QC package, but no additional corrective action is required. If sample results are less than 10x higher than the blank result, the analysis results for those samples are invalid. The cause of contamination is investigated; the entire batch is re-analyzed if required and if sample is available. </td></rl.<>	 If the method blank result is equal to or higher than the RL, the following apply: If sample results are at least 10x higher than the blank result, it is documented on the daily QC package, but no additional corrective action is required. If sample results are less than 10x higher than the blank result, the analysis results for those samples are invalid. The cause of contamination is investigated; the entire batch is re-analyzed if required and if sample is available.

MLD080 Revision 0.0 Approval Date: January 20, 2023 Page 19 of 26

QC Type	Frequency	Criteria	Corrective Action
Field Blank / Trip Blank	Client request or field protocol.	<rl.< td=""><td>• If ≥ RL reanalyze to confirm results. Investigate if still outside criteria. Flag and report results if no analytical issues.</td></rl.<>	• If ≥ RL reanalyze to confirm results. Investigate if still outside criteria. Flag and report results if no analytical issues.
Contamination Check	For tubes due to be sent out as sampling media, including field blanks and trip blanks, a minimum of two tubes per cleaning batch is analyzed.	< RL.	 If ≥ RL repeat tube cleaning/conditioning and repeat the contamination check. If still ≥ RL replace the tube(s).
Sample Hold Time	All samples.	Store tubes < 5°C until analysis. Analyze within 30 days from collection.	• If hold time or temperature is exceeded, samples are flagged, documented, and reported.
Sampling Conditions Check	All samples.	Maximum temperature ≤ 35°C and absolute humidity ≤ 17 g/m³.	 If local meteorological data indicates > 35°C during sampling document, and flag and report results. If absolute humidity > 17 g/m³ (calculated using average temperature and humidity during sampling and an on-line calculator such as that from NOAA), document, and flag and report results.
Brass Cap Integrity Check	All samples.	Checks caps aren't loose or have fallen off.	• If caps are loose or have fallen off, samples are flagged, documented, and reported
Duplicate	1 per 10 or fewer samples in analytical batch.	RPD ± 25%.	 If RPD exceeds ± 25%, evaluate. If primary and duplicate samples have results <5x RL, no need to notify management. Report results. If both sample results are ≥5x RL and the RPD > 25%, re-analyze duplicate and all associated samples in the batch. If still outside criteria, investigate and correct issues, re-analyze. Invalidate all samples in batch if duplicate fails again.
Collocated Samples	10% of field samples or per field protocol.	RPD ± 25%.	 If RPD exceeds ± 25%, evaluate. If primary and collocated samples have results <5x RL, no need to notify management. Report results. If both primary and collocated results are ≥5x RL, notify NLB management, report results and document.

MLD080 Revision 0.0 Approval Date: January 20, 2023 Page 20 of 26

QC Type	Frequency	Criteria	Corrective Action
Carryover Check	After analysis of high concentration sample exceeding upper linear range.	No target analytes detected above RL.	 Analyze one or more system blanks to clean system. Evaluate subsequent sample(s) if < RL then no further action is necessary, otherwise re-run to confirm results are not biased high due to contamination from analysis of preceding high concentration sample. Duplicate criteria is used to confirm results. Re-analyze high-level sample at a dilution to get target analyte within the linear calibration range. Report first analysis for all compounds within the calibration range and report the dilution analysis for the compounds that exceeded the calibration range in the initial analysis.
Field Spike	Per client request or field protocol.	70-130% of expected value.	 Re-analyze to confirm results. Investigate if still outside criteria. Report results if no analytical issues and control standard meets criteria. Results outside criteria are flagged.
Trip Spike	Per client request or field protocol.	70-130% of expected value.	 Re-analyze to confirm results. Investigate if still outside criteria. Report results if no analytical issues and control standard meets criteria. Results outside criteria are flagged.
MDL Verification	To be verified annually, and when major maintenance or major changes are done.	 Minimum of seven replicates are required. Must meet window criteria of MDL < Spike Concentration < 10x MDL. MDL recoveries, against expected concentrations, must be within 50-150%. 	 If the MDL criteria is not met, prepare and analyze another set of MDL replicates. If the MDL criteria is still not met, the MDL may be accepted with justification and management approval. This must be documented and placed in the MDL data package.

18. CALCULATIONS

18.1. 0.1 percent CS₂ in EA is calculated as:

$$\frac{amount CS_2 spiked (\mu L) x \left(\frac{mL}{1000 \mu L}\right)}{final volume (mL)} x 100\%$$

18.2. MITC stock standard concentration is calculated as:

$$\frac{weight of MITC neat (g) x \left(\frac{1000 mg}{g}\right) x \left(\frac{1000 \mu g}{mg}\right)}{final volume (mL)}$$

18.3. Intermediate standard concentrations are calculated as:

 $\frac{\text{stock standard concentration } \left(\frac{\mu g}{mL}\right) \text{ x volume added } (mL)}{\text{final volume } (mL)}$

18.4. Relative Percent Difference (%RPD) between two results is calculated as:

%RPD =
$$\frac{|X_1 - X_2|}{(X_1 + X_2)/2} x \ 100$$

X₁ = First measurement value X₂ = Second measurement value

18.5. Relative Standard Deviation (RSD) for Control Limits is calculated as:

$$RSD = \frac{S}{\overline{X}} x \ 100$$

S = Standard Deviation

 \overline{X} = Sample Mean

18.6. Field spike recoveries are calculated as:

 $\Big(rac{Field\ spike\ sample\ concentration-Collocated\ sample\ concentration}{Spiked\ Amount}\Big)x\ 100\%$

19. DATA MANAGEMENT AND REPORTING

- 19.1. Data management consists of samples logged into LIMS, documentation of unusual occurrences and their resolutions, creation of data packages (monthly, amendments and special projects) for peer review and management approval, submittal of data to clients, archival procedures for sample media and respective chains of custody. Program and maintenance notebooks and/or logbooks are always to be kept with the instrumentation.
- 19.2. After data acquisition, the analytical software processes raw data files to produce result files. The result files contain quantitation information such as peak areas and retention times, along with concentration and instrumentation information.
- 19.3. All target compounds must be confirmed with spectral information from a standard or MS library. Chromatographic peak integrations performed by the analytical software should be reviewed by the analyst. Any re-integrations (manual changes to the baseline) amended by the chemist are documented in the processing software.
 - 19.3.1. Retention times are visually evaluated to confirm that the peaks are not shifting more than ± 0.300 minutes compared to the CCV level of the ICAL. If shifting occurs, re-analyze the samples with the RT shifting.
- 19.4. Data Transfer to LIMS
 - 19.4.1. Data from the analytical instrument are transferred into LIMS via a data transfer software (i.e., LIMSLink). Data transfer software is also programmed to check results against QC criteria in LIMS before data transfer. Post data transfer, the analyst will review the raw data and QC data transfer and apply corrective action(s) as needed.
- 19.5. Reporting Results
 - 19.5.1. All data will be reviewed by the analyst, peer reviewed, and approved by management as per the NLB QCM before being released to the client.

- 19.5.2. The final results will be adjusted by an appropriate dilution factor (only if the sample was diluted; otherwise, the dilution factor would be 1.00) and reported in ng/sample.
- 19.5.3. Analyte concentrations will not be reported below the RL unless otherwise requested by the client and approved by NLB management.

20. MAINTENANCE AND REPAIRS

Preventative maintenance is done on an annual basis on the autosampler, concentrator, and GC-MS. Repairs are done as needed by an approved vendor under contract to MLD or by a staff member experienced in the repair. Any preventive maintenance and/or repairs completed are documented in a logbook stored near the instrument or recorded in the instrument log files.

21. REFERENCES

- 21.1. EPA TO-17, Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes <u>https://www.epa.gov/sites/default/files/2019-11/documents/to-17r.pdf</u>
- 21.2. CARB NLB Laboratory Quality Control Manual Revision 5.0, December 7, 2021 or current.
- 21.3. CARB, "Chemical Hygiene Plan for Northern Laboratory Branch 1927 13th Street, 1900 14th Street," November 2021 or current.
- 21.4. Trace 1300 and Trace 1310, Gas Chromatographs, Hardware Manual, Thermo Fisher Scientific, January 2016. <u>https://assets.thermofisher.com/TFS-Assets/CMD/manuals/Man-31715002-GC-TRACE-1300-1310-Hardware-Man31715002-EN.pdf</u>
- 21.5. Trace 1300 and Trace 1310, Gas Chromatographs, User Guide, Thermo Fisher Scientific, January 2016. <u>https://assets.thermofisher.com/TFS-</u> <u>Assets/CMD/manuals/Man-31715003-GC-TRACE-1300-1310-User-</u> <u>Man31715003-EN.pdf</u>

22. APPENDICES

Appendix 1 (OLS-MLD080-A1): Typical Thermal Desorption Methods for MLD0780. Appendix 2 (OLS-MLD080-A2): Typical GC-MS Methods for MLD080.

23. Revision History

SOP/Addendum Identification	Approval Date	Description of Change
MLD080 Revision 0.0	January 20, 2023	New method for the analysis of Volatile pesticides in ambient air using Gas Chromatography/Mass Spectrometry

Appendix 1

OLS-MLD080-A1

Typical Thermal Desorption Methods for MLD080

Note – These operating conditions are specific to CARB's use of Markes units with a Thermo GC-MS. Method parameters may change if needed by an experienced analyst and by management approval.

Markes units with a Thermo GC-MS

Standby – Split On; 10 mL/min Flow Path – 120 °C GC Cycle Time – 15 minutes Minimum Carrier Pressure – 5 psi

Dry purge: 2 min at 50 mL/min Tube desorb time: 10 mins at 300 °C, trap in line at 10 mL/min, split on at 70 mL/min Trap Purge – 2 minutes at 50 mL/min Trap Low – 5 °C Trap High – 250 °C Trap Heating Rate – 20 °C/s Trap Hold – 1 minutes; split on at 30 mL/min

Nitrogen Pneumatics – approx. 50 psi

Appendix 2

OLS-MLD080-A2

Typical GC-MS Methods for MLD080

Note – these operating conditions are specific to CARB's use of a Thermo GC-MS. Method parameters may change if needed by an experienced analyst and by management approval.

.....

Thermo GC Parameters:

Front Inlet – Off Front Inlet Flow Mode – FlowCtrl Front Inlet Pressure Control – Off Front Inlet Flow Control – On PrepRun Timeout – 999.99 minutes Equilibration Time – 0.100 minutes Ready Delay – 0.100 minutes Front Inlet Split Mode – Splitless Front Inlet Split Flow – Off Front Inlet Flow – 2.400 mL/min

Thermo Column Oven Parameters:

Rate (°C/min)	Target Value (°C)	Hold Time (minutes)	
0.00	60	1.00	
15.00	130	0.00	
35.00	250	3.00	

Thermo MS Parameters:

Ion Source (Thermo MS) – 310 °C MS Transfer Line – 230 °C Ionization Mode – EI

Time (minutes)	Range (amu)	Dwell/Scan Time (seconds)	Detector Gain
4.10	45-300	0.2	3.00x10 ⁵
4.10	72, 73, 75, 110, 112, 117, 119, 121	0.006	3.00x10 ⁵
9.00	45-300	0.15	3.00x10 ⁵