Field Evaluation Sensirion SEN44

Background

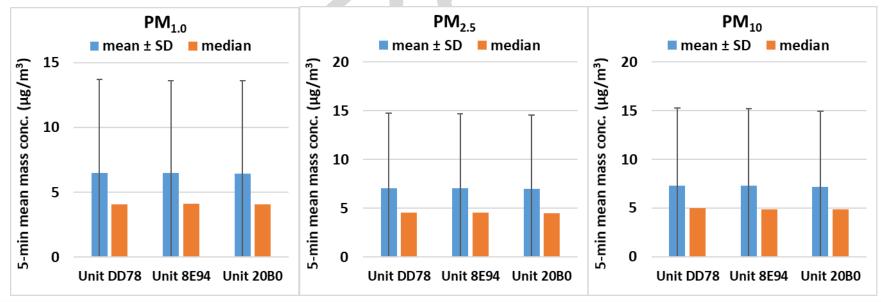
 From 11/08/2023 to 12/10/2023, and then from 3/6/2024 to 04/06/2024, three Sensirion SEN44 units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants.

<u>Sensirion SEN44 (3 units tested)</u>:

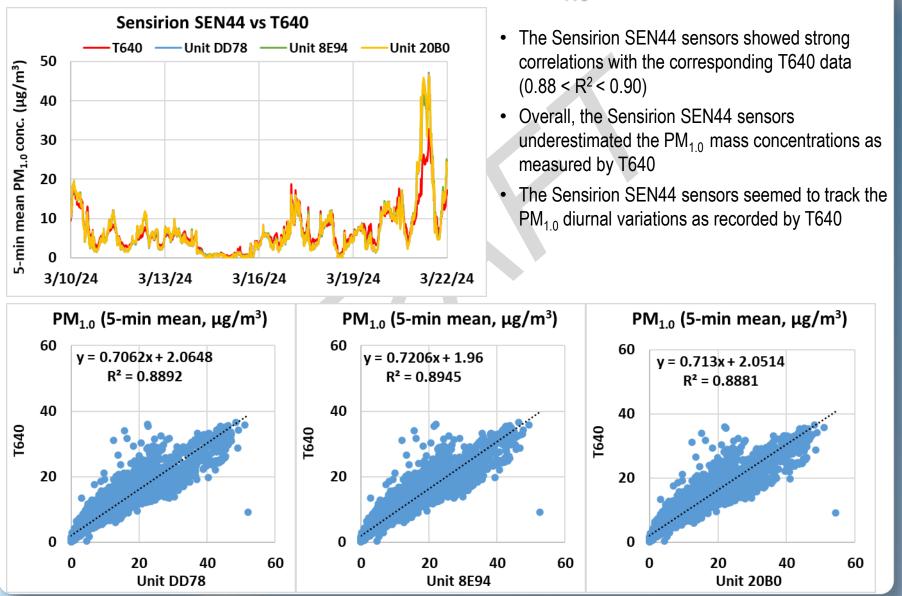
- PM Optical (Sensirion SEN44, non-FEM)
- Each unit measures: PM_{1.0} (µg/m³), PM_{2.5} (µg/m³), PM₁₀(µg/m³), T (°C), RH (%)
- > Also reports: $PM_{4.0}$ (µg/m³), VOC index
- ➤ Unit cost: ~\$53
- ➤ Time resolution: 1 second
- ➤ Units IDs: DD78, 8E94, and 20B0

Sensirion SEN44

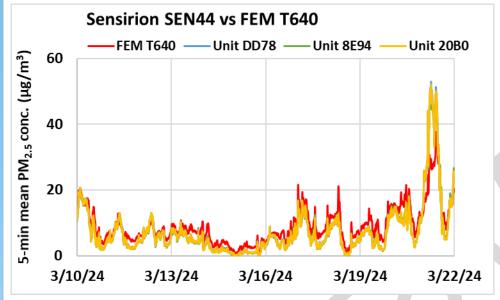
- South Coast AQMD Reference instruments:
- Teledyne API T640 (hereinafter FEM T640 for PM_{2.5}, T640 otherwise):
 - Optical particle counter (FEM PM_{2.5})
 - \succ Measures PM_{1.0}, PM_{2.5} and PM₁₀ (µg/m³)
 - ➤ Cost: ~\$21,000
 - ➤ Time resolution: 1-min
- Met Station (T, RH, P, WS, WD):
 - ➤ Cost: ~\$5,000
 - Time resolution: 1-min

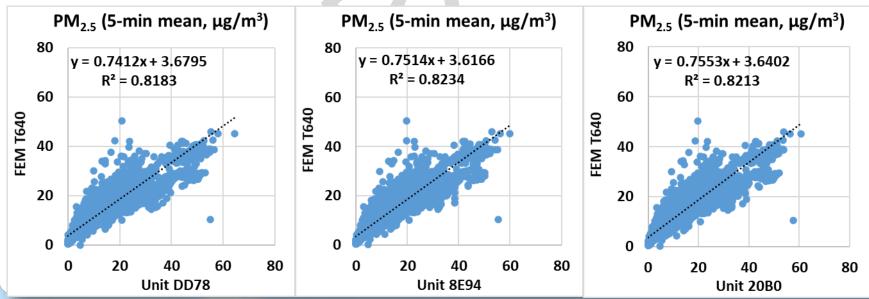

FEM T640

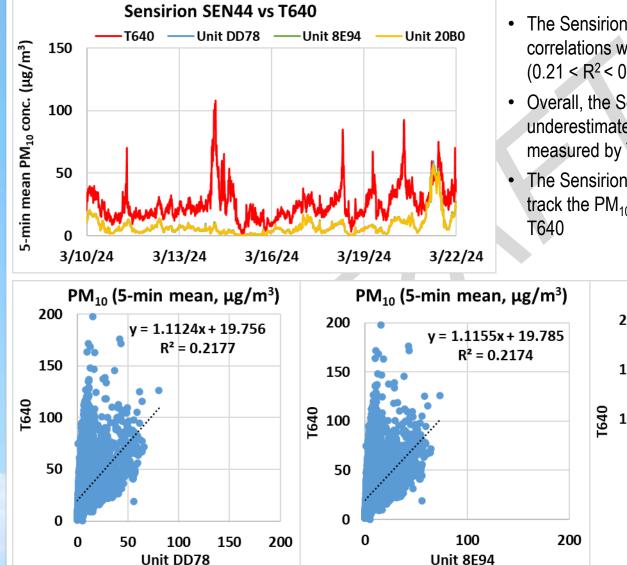
Data validation & recovery

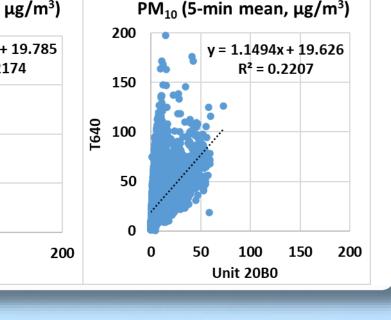

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit DD78, Unit 8E94 and Unit 20B0 was ~93.6%, ~93.6% and ~93.6%, respectively for all PM measurements

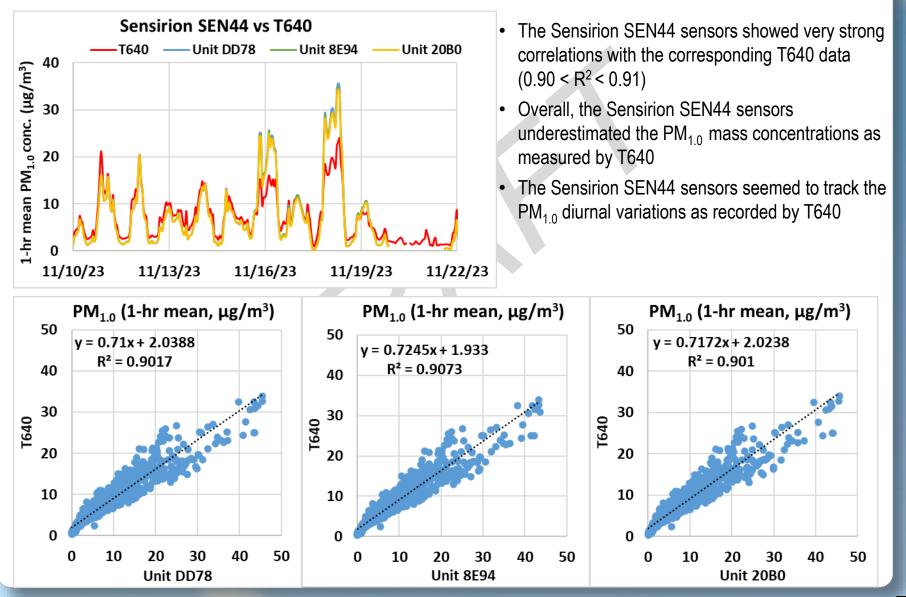
Sensirion SEN44; intra-model variability


- Absolute intra-model variability was ~0.03, ~0.04 and ~0.06 μg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~0.48%, ~0.61% and ~0.85% for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

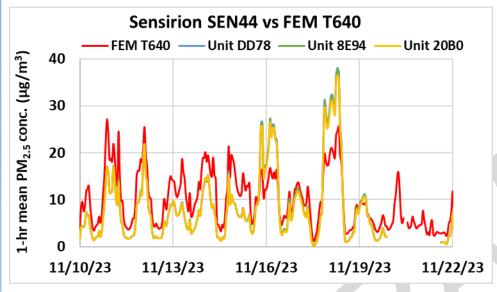

Sensirion SEN44 vs T640 (PM_{1.0}; 5-min mean)


Sensirion SEN44 vs FEM T640 (PM_{2.5}; 5-min mean)

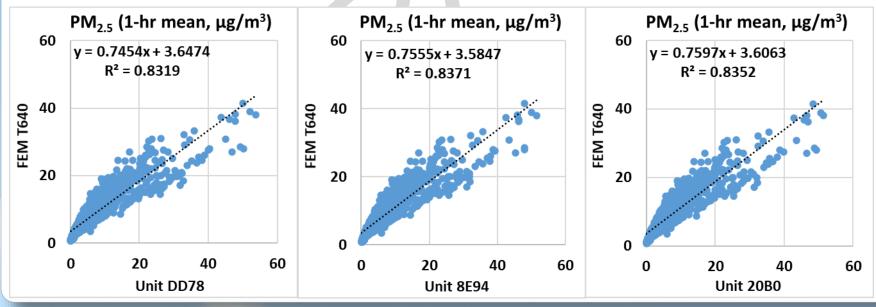

- The Sensirion SEN44 sensors showed strong correlations with the corresponding FEM T640 data (0.81 < R² < 0.83)
- Overall, the Sensirion SEN44 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Sensirion SEN44 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640


Sensirion SEN44 vs T640 (PM₁₀; 5-min mean)

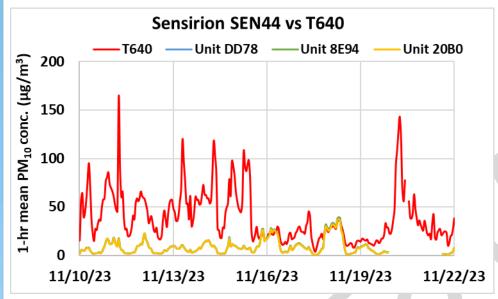
- The Sensirion SEN44 sensors showed very weak correlations with the corresponding T640 data (0.21 < R² < 0.23)
- Overall, the Sensirion SEN44 sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Sensirion SEN44 sensors did not seem to track the PM₁₀ diurnal variations as recorded by T640

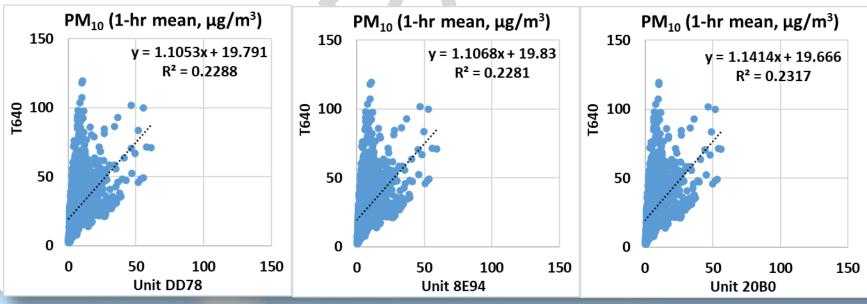


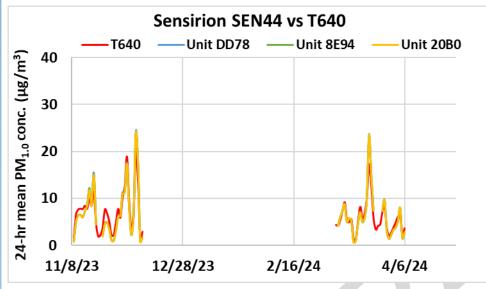
Sensirion SEN44 vs T640 (PM_{1.0}; 1-hr mean)

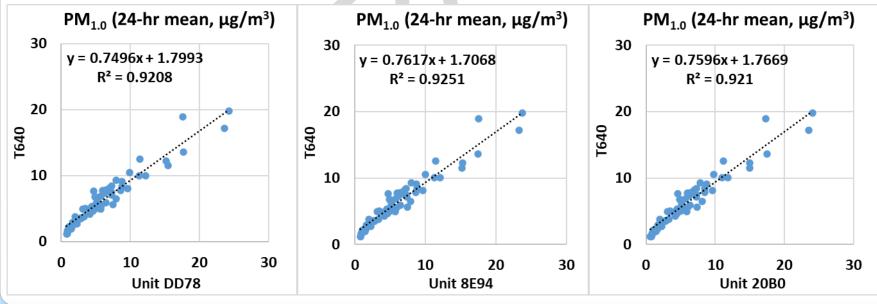


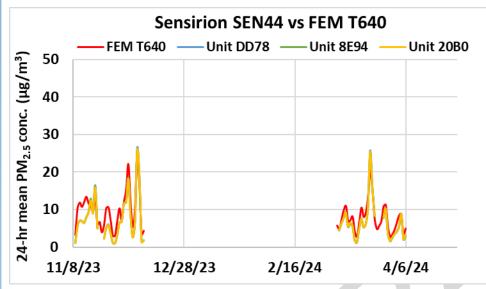
7

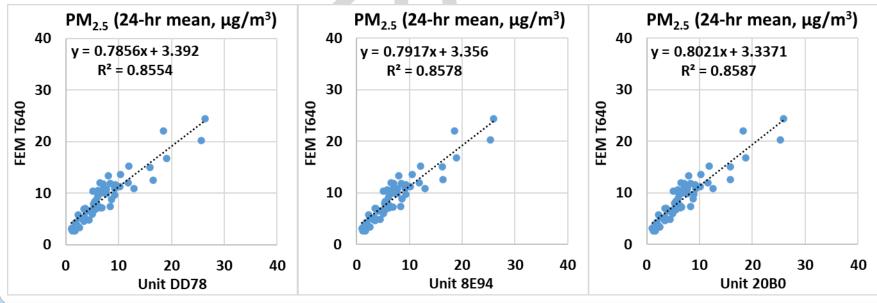

Sensirion SEN44 vs FEM T640 (PM_{2.5}; 1-hr mean)

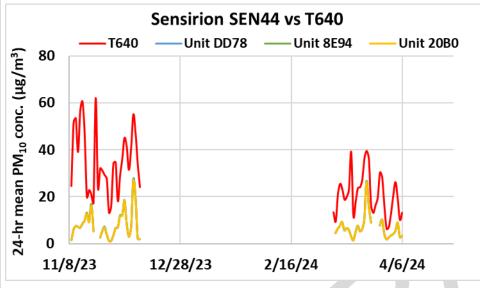

- The Sensirion SEN44 sensors showed strong correlations with the corresponding FEM T640 data (0.83 < R² < 0.84)
- Overall, the Sensirion SEN44 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Sensirion SEN44 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

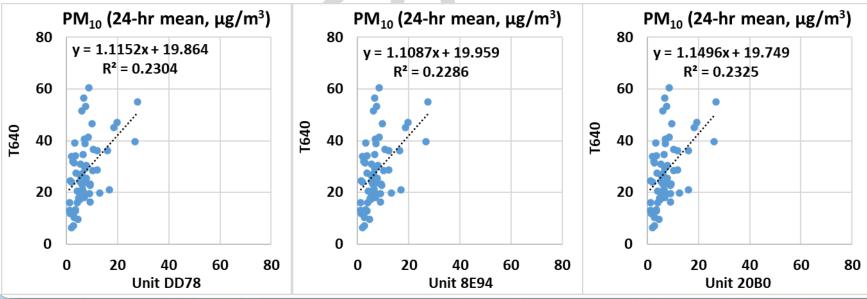

Sensirion SEN44 vs T640 (PM₁₀; 1-hr mean)


- The Sensirion SEN44 sensors showed very weak correlations with the corresponding T640 data (0.22 < R² < 0.24)
- Overall, the Sensirion SEN44 sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Sensirion SEN44 sensors did not seem to track the PM₁₀ diurnal variations as recorded by T640


Sensirion SEN44 vs T640 (PM_{1.0}; 24-hr mean)


- The Sensirion SEN44 sensors showed very strong correlations with the corresponding T640 data (0.92 < R² < 0.93)
- Overall, the Sensirion SEN44 sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Sensirion SEN44 sensors seemed to track the PM_{1.0} daily variations as recorded by T640

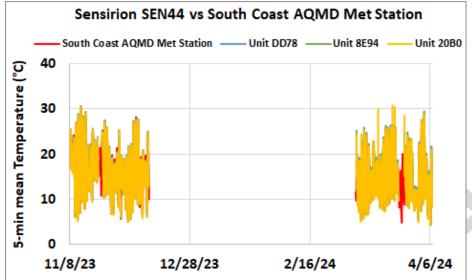

Sensirion SEN44 vs FEM T640 (PM_{2.5}; 24-hr mean)


- The Sensirion SEN44 sensors showed strong correlations with the corresponding FEM T640 data (0.85 < R² < 0.86)
- Overall, the Sensirion SEN44 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Sensirion SEN44 sensors seemed to track the PM_{2.5} daily variations as recorded by FEM T640

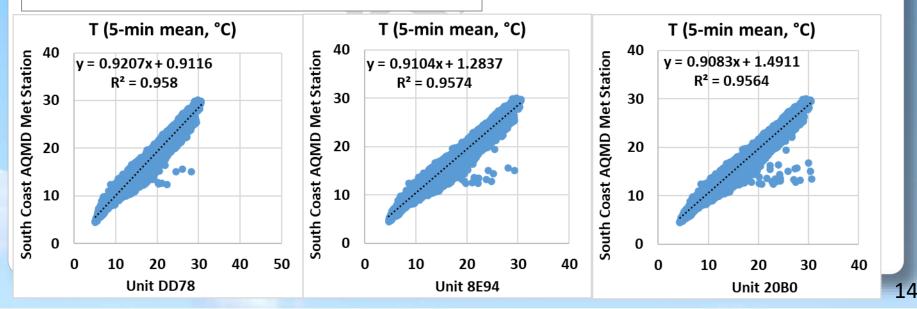
Sensirion SEN44 vs T640 (PM₁₀; 24-hr mean)

- The Sensirion SEN44 sensors showed very weak correlations with the corresponding T640 data (0.22 < R² < 0.24)
- Overall, the Sensirion SEN44 sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Sensirion SEN44 sensors did not seem to track the PM₁₀ daily variations as recorded by T640

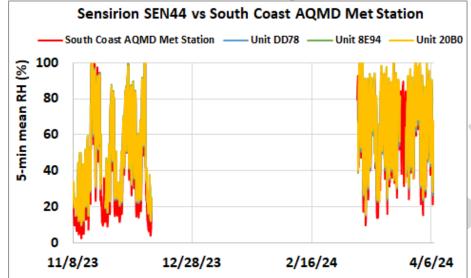
Summary: PM

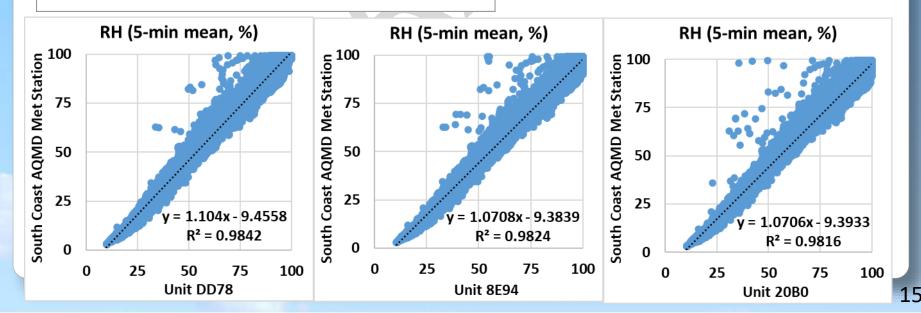

	Averaç	-	Sensirion SEN44 vs T640, PM _{1.0}						T640 (PM _{1.0} , μg/m ³)		
	Sensors Average (µg/m ³)	s, PM _{1.0} SD (μg/m ³)	R ²	Slope	Intercept	MBF ¹	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	6.5	7.2	0.89	0.71 to 0.72	2.0 to 2.1	-0.20 to -0.14	1.6 to 1.7	2.7 to 2.8	6.4	5.3	0.2 to 36.7
1-hr	6.5	7.1	0.90 to 0.91	0.71 to 0.72	1.9 to 2.0	-0.20 to -0.14	1.6 to 1.7	2.5 to 2.7	6.4	5.2	0.3 to 33.9
24-hr	6.6	5.2	0.92 to 0.93	0.75 to 0.76	1.7 to 1.8	-0.18 to -0.12	1.2 to 1.3	1.6 to 1.7	6.5	4.0	1.1 to 19.8
	Average of 3 Sensors, PM _{2.5}		Sensirion SEN44 vs FEM T640, PM _{2.5}						FEM T640 (PM _{2.5} , μg/m ³)		
	Average (µg/m³)	SD (µg/m ³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	7.0	7.7	0.82	0.74 to 0.76	3.6 to 3.7	-1.94 to -1.86	2.9 to 3.0	3.8	8.7	6.2	0.1 to 50.4
1-hr	7.0	7.5	0.83 to 0.84	0.75 to 0.76	3.6	-1.93 to -1.85	2.9	3.6 to 3.7	8.7	6.1	0.7 to 41.5
24-hr	7.2	5.5	0.86	0.79 to 0.80	3.3 to 3.4	-1.93 to -1.85	2.4 to 2.5	2.8	8.7	4.6	2.7 to 24.4
	Average of 3 Sensors, PM ₁₀		Sensirion SEN44 vs T640, PM ₁₀						T640 (PM ₁₀ , μg/m ³)		
	Average (µg/m³)	SD (µg/m ³)	R ²	Slope	Intercept	MBE ¹ (μg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	7.3	7.9	0.22	1.11 to 1.15	19.6 to 19.8				27.9	19.4	0.2 to 366.9
1-hr	7.3	7.7	0.23	1.11 to 1.14	19.7 to 19.8	-20.7 to -20.6	20.7 to 20.8	25.9 to 26.0	27.9	18.6	2.1 to 164.5
24-hr	7.4	5.6	0.23	1.11 to 1.15	19.7 to 20.0	-20.9 to -20.7	20.7 to 20.9	23.6 to 23.7	27.9	13.5	6.4 to 62.0

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).


² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.


Sensirion SEN44 vs South Coast AQMD Met Station (Temp; 5-min mean)


- The Sensirion SEN44 sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.95 < R² < 0.96)
- Overall, the Sensirion SEN44 sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Sensirion SEN44 sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

Sensirion SEN44 vs South Coast AQMD Met Station (RH; 5-min mean)

- Sensirion SEN44 sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.98 < R² < 0.99)
- Overall, the Sensirion SEN44 sensors overestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Sensirion SEN44 sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

Discussion

- The three **Sensirion SEN44** sensors' data recovery for all PM fractions was ~93.6%.
- The absolute intra-model variability was ~0.03, ~0.04 and ~0.06 μg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively
- The Sensirion SEN44 sensors showed very strong correlations with the corresponding reference PM_{1.0} data (0.90 < R² < 0.91, 1-hr mean), strong correlations with the corresponding PM_{2.5} data (0.83 < R² < 0.84, 1-hr mean), and very weak correlations with the corresponding reference PM₁₀ data (0.22 < R² < 0.24; 1-hr mean). The sensors underestimated PM_{1.0}, PM_{2.5} and PM₁₀ mass concentrations as measured by T640
- Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station T and RH data (R² ~ 0.96 for T and R² ~ 0.98 for RH) and overestimated the T and RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by South Coast AQMD staff for this evaluation.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.

• These results are still preliminary