Field Evaluation PAMAir – Airmazing PAS-OA-320-3G

Background

 From 08/30/2023 to 10/25/2023, three PAMAir Airmazing PAS-OA-320-3G (hereinafter PAMAir Airmazing) sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants

PAMAir Airmazing (3 units tested):

- PM Sensors Optical (Sensirion SPS30, non-FEM)
- Each unit measures: PM_{2.5} (µg/m³), T (°C), RH (%)
- ➤ Unit cost: \$500
- ➤ Time resolution: 1-min
- Units IDs: K21S, 8BSU, D1TC

South Coast AQMD Reference Instruments

- Teledyne API T640 (*hereinafter FEM T640 for PM*_{2.5}, T640 otherwise):
 - Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$ and PM_{10} (µg/m³)
 - ≻ Cost: ~\$21,000
 - ➤ Time resolution: 1-min
- MetOne BAM:
 - ➢ Beta-attenuation (FEM PM_{2.5} & PM₁₀)
 - > Measures $PM_{2.5}$, and PM_{10} (µg/m³)
 - ≻ Cost: ~\$20,000
 - ➤ Time resolution: 1-hr
- Met Station (T, RH, P, WS, WD):
 - ≻ Cost: ~\$5,000
 - Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit K21S, Unit 8BSU and Unit D1TC was ~ 85.2%, ~84.9% and ~83.5%, respectively, for PM_{2.5} measurements

PAMAir Airmazing; intra-model variability

- Absolute intra-model variability was ~0.23 µg/m³ for PM_{2.5} (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~1.8% for PM_{2.5} (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} FEM BAM and FEM T640

- Data recovery for PM_{2.5} from FEM BAM and FEM T640 was 98.6% and 99.9%, respectively.
- Strong correlations between the reference instruments for $PM_{2.5}$ measurements ($R^2 \sim 0.76$) were observed.

PAMAir Airmazing vs FEM T640 (PM_{2.5}; 5-min mean)

5

PAMAir Airmazing vs FEM T640 (PM_{2.5}; 1-hr mean)

- The PAMAir Airmazing sensors showed strong correlations with the corresponding FEM T640 data (0.85 < R² < 0.87)
- Overall, the PAMAir Airmazing sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The PAMAir Airmazing sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

PAMAir Airmazing vs FEM T640 (PM_{2.5}; 24-hr mean)

- The PAMAir Airmazing sensors showed strong correlations with the corresponding FEM T640 data (0.88 < R² < 0.90)
- Overall, the PAMAir Airmazing sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The PAMAir Airmazing sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

PAMAir Airmazing vs FEM BAM (PM_{2.5}; 1-hr mean)

- The PAMAir Airmazing sensors showed moderate correlations with the corresponding FEM BAM data (0.56 < R² < 0.58)
- Overall, the PAMAir Airmazing sensors underestimated the PM_{2.5} mass concentrations as measured by FEM BAM
- The PAMAir Airmazing sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM BAM

PAMAir Airmazing vs FEM BAM (PM_{2.5}; 24-hr mean)

- The PAMAir Airmazing sensors showed moderate correlations with the corresponding FEM BAM data (0.68 < R² < 0.70)
- Overall, the PAMAir Airmazing sensors underestimated the PM_{2.5} mass concentrations as measured by FEM BAM
- The PAMAir Airmazing sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM BAM

Summary

	Average of 3 Sensors, PM _{2.5}		PAMAir Airmazing vs FEM BAM & FEM T640, PM _{2.5}						FEM BAM & FEM T640 (PM _{2.5} , μg/m ³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	12.5	9.2	0.84 to 0.86	0.79 to 0.83	5.1 to 5.3	-3.1 to -2.7	3.8 to 4.0	4.5 to 4.8	15.4	8.1	2.1 to 146.2
1-hr	12.5	9.0	0.57 to 0.87	0.56 to 0.84	5.0 to 6.0	-3.1 to -0.3	3.8 to 4.7	4.4 to 6.1	13.1 to 15.4	6.9 to 7.9	0.2 to 56.2
24-hr	12.4	7.5	0.68 to 0.90	0.54 to 0.83	5.0 to 6.2	-3.1 to -0.3	3.2 to 3.6	3.7 to 4.5	13.1 to 15.4	4.8 to 6.2	3.2 to 32.4

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values). ² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments. ³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

PAMAir Airmazing vs South Coast AQMD Met Station (Temp; 5-min mean)

- The PAMAir Airmazing sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.93 < R² < 0.95)
- Overall, the PAMAir Airmazing temperature measurements overestimated the corresponding South Coast AQMD Met Station data
- The PAMAir Airmazing sensors seemed to track the temperature diurnal variations as recorded by South Coast AQMD Met Station

PAMAir Airmazing vs South Coast AQMD Met Station (RH; 5-min mean)

- The PAMAir Airmazing sensors showed strong correlations with the corresponding South Coast AQMD Met Station data (0.77 < R² < 0.82)
- Overall, the PAMAir Airmazing RH measurements overestimated the corresponding South Coast AQMD Met Station data
- The PAMAir Airmazing sensors seemed to track the RH diurnal variations as recorded by South Coast AQMD Met Station

Discussion

- The three PAMAir Airmazing sensors' data recovery Unit K21S, Unit 8BSU and Unit D1TC was ~ 85.2%, ~84.9% and ~83.5%, respectively, for PM_{2.5} measurements
- The absolute intra-model variability was ~ 0.23 μ g/m³ for PM_{2.5} measurements
- The reference instruments (BAM and T640) showed strong correlations with each other for PM_{2.5} mass concentration measurements (R² ~ 0.76, 1-hr mean)
- PM_{2.5} mass concentrations measured by the PAMAir Airmazing sensors showed strong correlations with the corresponding FEM T640 data (0.85 < R² < 0.87, 1-hr mean) and moderate correlations with the corresponding FEM BAM data (0.56 < R² < 0.58, 1-hr mean). The sensors underestimated PM_{2.5} mass concentrations as measured by FEM T640 and FEM BAM
- No sensor calibration was performed by South Coast AQMD Staff for this evaluation
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary