Field Evaluation Kunak Air Lite

Background

- From 03/01/2024 to 05/01/2024, three Kunak Air Lite multi-sensor units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants.
- Kunak Air Lite (3 units tested):
 - Gas Sensors: Electrochemical (Alphasense, non-FEM)
 - PM Optical (Plantower PMS5003, non-FEM)
 - Each unit measures: O₃ (ppb), NO₂ (ppb), PM_{1.0} (µg/m³), PM_{2.5} (µg/m³), PM₁₀(µg/m³), T (°C), RH (%)
 - Unit cost: \$5,033 as-tested (\$5,960 with cloud service)
 - Time resolution: 1-min
 - ➤ Units IDs: 144, 145, and 146

- South Coast AQMD Reference instruments:
 - O₃ instrument (Teledyne T400, hereinafter FEM T400); cost: ~\$7,000
 - Time resolution; 1-min
 - NO/NO₂ instrument (Teledyne T200, hereinafter FRM T200); cost: ~\$11,000
 - Time resolution: 1-min
 - PM instrument (Teledyne API T640; FEM PM_{2.5}, hereinafter FEM T640); cost: \$21,000
 - ➤ Time resolution: 1-min
 - Measures PM_{1.0}, PM_{2.5}, PM₁₀ (µg/m³)
 - PM Instrument (MetOne BAM; FEM PM_{2.5} and PM₁₀, hereinafter FEM BAM); cost: \$25,000 and up
 - Time resolution: 1-hr
 - > Measures $PM_{2.5}$, PM_{10} (µg/m³)
 - Met station (T, RH, P, WS, WD); cost: ~\$5,000
 - Time resolution: 1-min

Data Handling

- The Kunak Air Lite sensors possess configuration capabilities for a local calibration before the evaluation that were not performed. Testing with calibrated sensors may achieve different results.
- A baseline adjustment for NO₂ was not performed because the diurnal minima were zero in the sensor data that was retrieved from the online dashboard.
- Kunak's user manual outlines detailed instruction on calibration and baseline adjustment. Users are recommended to reach out to Kunak for assistance with sensor calibration/baseline adjustment using the Kunak online dashboard.
- All values below the manufacturer stated limit of detection were excluded from data analysis but did not count against data recovery

Ozone (O₃) in Kunak Air Lite

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for O₃ from Unit 144, Unit 145 and Unit 146 was ~98.9%, ~99.1% and ~99.1%, respectively
- Values below manufacturer stated limit of detection were excluded from further analysis but do not count against data recovery

Kunak Air Lite; Intra-model variability

• Absolute intra-model variability was ~1.09 ppb for the ozone measurements (calculated as the standard deviation of the three sensor means)

• Relative intra-model variability was ~2.86% for the ozone measurements

(calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Kunak Air Lite vs FEM T400 (Ozone; 5-min mean)

6

Kunak Air Lite vs FEM T400 (Ozone; 1-hr mean)

Kunak Air Lite vs FEM T400 (Ozone; 8-hr mean)

Summary: Ozone

	Average of 3 Sensors, Ozone		Kunak Air Lite vs FEM T400, Ozone						FEM T400, Ozone (ppb)			
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FEM T400 Average	FEM T400 SD	Range during the field evaluation	
5-min	37.0	17.1	0.85 to 0.89	0.75 to 0.89	6.3 to 13.4	-4.1 to -2.1	4.7 to 6.8	5.8 to 8.2	35.0	19.2	0.1 to 95.7	
1-hr	37.5	16.5	0.85 to 0.90	0.75 to 0.89	6.1 to 13.4	-4.2 to -2.1	4.5 to 6.7	5.5 to 8.0	33.9	19.2	0.5 to 94.6	
8-hr	38.1	11.7	0.79 to 0.87	0.79 to 0.96	3.3 to 11.2	-3.4 to -1.7	3.6 to 5.3	4.3 to 6.3	34.0	16.3	1.2 to 74.4	

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Nitrogen Dioxide (NO₂) in Kunak Air Lite

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for NO₂ from Unit 144, Unit 145 and Unit 146 was ~99.0%, ~99.1% and ~99.2%, respectively
- Values below manufacturer stated limit of detection were excluded from further analysis but do not count against data recovery

Kunak Air Lite; Intra-model variability

• Absolute intra-model variability was ~0.41 ppb for the NO₂ measurements (calculated as the standard deviation of the three sensor means)

• Relative intra-model variability was ~3.21% for the NO₂ measurements (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Kunak Air Lite vs FRM T200 (NO₂; 5-min mean)

Kunak Air Lite vs FRM T200 (NO₂; 1-hr mean)

13

Kunak Air Lite vs FRM T200 (NO₂; 24-hr mean)

Summary: NO₂

	Average of 3 Sensors, NO ₂		Kunak Air Lite vs FRM T200, NO ₂							FRM T200, NO ₂ (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FRM T200 Average	FRM T200 SD	Range during the field evaluation	
5-min	12.5	6.3	0.66 to 0.70	1.08 to 1.15	-3.4 to -3.3	1.7 to 2.3	4.2 to 4.5	5.0 to 5.4	9.1	8.1	0.5 to 42.3	
1-hr	12.6	6.1	0.69 to 0.72	1.12 to 1.20	-4.2 to -4.0	1.7 to 2.4	4.1 to 4.4	4.9 to 5.3	9.4	8.1	1.0 to 40.1	
24-hr	12.6	3.6	0.58 to 0.71	0.83 to 1.13	-5.2 to -1.7	3.6 to 4.0	3.9 to 4.3	4.4 to 4.9	9.1	4.2	2.6 to 19.7	

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Particulate Matter (PM) in Kunak Air Lite

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 144, Unit 145 and Unit 146 was ~99.5%, ~99.8% and ~99.9%, respectively for all PM measurements
- Values below manufacturer stated limit of detection were excluded from further analysis but do not count against data recovery

Kunak Air Lite; intra-model variability

- Absolute intra-model variability was ~0.57, ~0.68 and ~0.72 μg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~12.09%, ~8.75% and ~8.37% for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} FEM BAM and FEM T640

- Data recovery for PM_{2.5} from FEM BAM and FEM T640 was ~ 99.1% and 99.9%, respectively.
- Strong correlations between the reference instruments for PM_{2.5} measurements (R²~0.77) were observed.

Reference Instruments: PM₁₀ FEM BAM and T640

- Data recovery for PM₁₀ from FEM BAM and T640 was ~ 98.9% and 99.9%, respectively.
- Strong correlations between the reference instruments for PM₁₀ measurements (R² ~0.83) were observed.

Kunak Air Lite vs T640 (PM_{1.0}; 5-min mean)

Kunak Air Lite vs FEM T640 (PM_{2.5}; 5-min mean)

Kunak Air Lite vs T640 (PM₁₀; 5-min mean)

²²

Kunak Air Lite vs T640 (PM_{1.0}; 1-hr mean)

Kunak Air Lite vs FEM T640 (PM_{2.5}; 1-hr mean)

Kunak Air Lite vs T640 (PM_{10} ; 1-hr mean)

25

100 120

Kunak Air Lite vs T640 (PM_{1.0}; 24-hr mean)

Kunak Air Lite vs FEM T640 (PM_{2.5}; 24-hr mean)

Kunak Air Lite vs T640 (PM₁₀; 24-hr mean)

Kunak Air Lite vs FEM BAM (PM_{2.5}; 1-hr mean)

Unit 146

Unit 145

FEM BAM

Unit 144

Kunak Air Lite vs FEM BAM (PM₁₀; 1-hr mean)

30

Kunak Air Lite vs FEM BAM (PM_{2.5}; 24-hr mean)

Kunak Air Lite vs FEM BAM (PM₁₀; 24-hr mean)

Summary: PM

	Average of 3 Sensors, PM _{1.0}		Kunak Air Lite vs T640, PM _{1.0}						T640 (PM _{1.0} , μg/m ³)				
	Average (µg/m³)	SD (µg/m ³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation		
5-min	4.6	3.3	0.76 to 0.79	1.41 to 1.72	0.5 to 0.8	-3.8 to -2.6	2.6 to 3.8	4.1 to 5.3	6.7	5.9	0.2 to 43.2		
1-hr	4.6	3.3	0.77 to 0.80	1.45 to 1.77	0.3 to 0.6	-3.9 to -2.7	2.7 to 3.9	4.1 to 5.3	6.7	5.9	0.3 to 42.0		
24-hr	4.9	2.6	0.87 to 0.88	1.61 to 2.06	-1.0 to -0.7	-3.9 to -2.6	2.6 to 3.9	3.6 to 4.9	6.7	4.9	1.1 to 24.4		
	Average of 3 Sensors, PM _{2.5}			Kunak Air Lite vs FEM BAM & FEM T640, PM _{2.5}						FEM BAM & FEM T640 (PM _{2.5} , μg/m ³)			
	Average (µg/m³)	SD (µg/m ³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation		
5-min	7.6	6.8	0.88 to 0.90	0.87 to 0.99	2.5 to 2.7	-2.6 to -1.4	2.1 to 2.8	2.7 to 3.5	9.0	6.9	0.1 to 49.5		
1-hr	7.7	6.7	0.70 to 0.91	0.67 to 1.01	2.4 to 3.0	-2.6 to -0.1	2.1 to 3.0	2.6 to 4.0	8.0 to 9.0	5.9 to 6.8	0.0 to 47.4		
24-hr	7.6	5.5	0.89 to 0.96	0.65 to 1.06	1.9 to 2.9	-2.4 to -0.01	1.5 to 2.4	1.8 to 2.7	7.9 to 9.0	4.3 to 5.7	1.7 to 28.0		
	Average of 3 Sensors, PM ₁₀		Kunak Air Lite vs FEM BAM & T640, PM ₁₀						FEM BA	FEM BAM & T640 (PM ₁₀ , μg/m ³)			
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m ³)	MAE ² (µg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation		
5-min	8.4	7.1	0.61 to 0.62	1.47 to 1.67	12.4 to 12.8	-18.2 to -16.7	16.7 to 18.2	19.2 to 20.8	23.9	15.1	0.2 to 138.8		
1-hr	8.5	7.0	0.41 to 0.66	0.96 to 1.69	12.4 to 14.4	-18.3 to -13.8	13.9 to 18.3	16.4 to 20.6	21.3 to 23.9	12.6 to 14.7	0.0 to 104.5		
24-hr	8.8	5.9	0.46 to 0.75	0.92 to 1.67	11.9 to 15.6	-18.4 to -13.5	13.5 to 18.4	14.7 to 19.6	21.3 to 23.9	9.6 to 11.8	4.4 to 54.4		

¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Kunak Air Lite vs South Coast AQMD Met Station (Temp; 5-min mean)

- The Kunak Air Lite sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data ($0.97 < R^2 < 0.99$)
- Overall, the Kunak Air Lite sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Kunak Air Lite sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station

20

30

40

Kunak Air Lite vs South Coast AQMD Met Station (RH; 5-min mean)

- Kunak Air Lite sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.98 < R² < 0.99)
- Overall, the Kunak Air Lite sensors underestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Kunak Air Lite sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

y = 1.0838x - 4.5273

 $R^2 = 0.9835$

120

100

80

60

40

20

0

O

20

40

60

Unit 146

80

100 120

RH (5-min mean, %)

Discussion

- The three Kunak Air Lite sensors' data recovery for O₃, NO₂ and all PM fractions was ~99.0%, 99.1% and 99.7%, respectively.
- The absolute intra-model variability for O₃ and NO₂ was ~1.09 ppb and ~0.41 ppb, respectively. Absolute intra-model variability was ~ 0.57, ~0.68 and ~0.72 μg/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively
- Reference instruments: strong correlations between FEM BAM and FEM T640 for PM_{2.5} (R² ~ 0.77, 1-hr mean) and strong correlations between FEM BAM and T640 for PM₁₀ (R² ~ 0.83, 1-hr mean) mass concentration measurements
- During the <u>entire</u> field deployment testing period:
 - Ozone sensors showed strong correlation with the FEM T400 instrument (0.85 < R² < 0.90, 5-min mean) and generally underestimated the corresponding FEM T400 data</p>
 - NO₂ sensors showed moderate correlations with the FRM T200 instrument (0.66 < R² < 0.70, 5-min mean) and overestimated the corresponding FRM T200 data</p>
 - The Kunak Air Lite sensors showed strong correlations with the corresponding reference PM_{1.0} data (0.77 < R² < 0.80, 1-hr mean), strong to very strong correlations with the corresponding reference PM_{2.5} data (0.70 < R² < 0.92, 1-hr mean) and weak to moderate correlations with the corresponding reference PM₁₀ data (0.4 < R² < 0.67; 1-hr mean). The sensors underestimated PM_{1.0}, PM_{2.5} and PM₁₀ mass concentrations as measured by the reference instruments
 - Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station T and RH data, respectively (R² ~ 0.98 for T and R² ~ 0.98 for RH) and overestimated the T and underestimated the RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by South Coast AQMD staff for this evaluation.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- <u>These results are still preliminary</u>