Field Evaluation Elitech Temtop M2000 2nd Generation

Air Quality Sensor Performance Evaluation Center

Background

- From 03/27/2020 to 06/04/2020, three Elitech Temtop M2000 2nd Generation (hereinafter Temtop M2000) sensors were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) instruments measuring the same pollutants
- <u>Temtop M2000 2nd Generation (3 *units tested*):</u>
 - Particle sensor: optical; non-FEM (PM200, Temtop)
 - \succ Each unit reports: PM_{2.5} and PM₁₀ (µg/m³)
 - \succ Unit also measures: CO₂ and formaldehyde
 - Unit also displays: Temperature and Relative Humidity
 - ➤ Unit cost: ~\$100
 - ➤ Time resolution: 1-min
 - > Units IDs: Unit 1, Unit 2 and Unit 3

- <u>GRIMM (reference instrument)</u>:
 - Optical particle counter (FEM PM_{2.5})
 - > Measures $PM_{1.0}$, $PM_{2.5}$, and PM_{10} (µg/m³)
 - ➤ Cost: ~\$25,000 and up
 - Time resolution: 1-min
- <u>Teledyne API T640 (reference instrument)</u>:
 - Optical particle counter (FEM PM_{2.5})
 - \blacktriangleright Measures PM_{2.5} & PM₁₀ (µg/m³)
 - > Unit cost: ~\$21,000
 - ➤ Time resolution: 1-min

Data validation & recovery

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit 1, Unit 2 and Unit 3 was ~ 100%, respectively, for both $\rm PM_{2.5}$ and $\rm PM_{10}$ measurements

Temtop M2000; intra-model variability

- Absolute intra-model variability was ~ 1.16 and 1.59 μ g/m³ for PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~ 12.9% and 11.5 % for PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

Reference Instruments: PM_{2.5} GRIMM and T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid datapoints were eliminated from the data-set)
- Data recovery for PM_{2.5} measurements from FEM GRIMM and FEM T640 was ~ 100% and 78%, respectively
- Strong correlations between the reference instruments for PM_{2.5} measurements (R² ~ 0.89)

Reference Instruments: PM₁₀ GRIMM and T640

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery for PM_{10} measurements from GRIMM and T640 was ~ 100% and 78%, respectively.
- Strong correlations between the reference instruments for PM_{10} measurements ($R^2 \sim 0.89$) were observed.

Temtop M2000 vs FEM GRIMM (PM_{2.5}; 5-min mean)

- The Temtop M2000 sensors showed strong correlations with the corresponding FEM GRIMM data (R² ~ 0.78)
- Overall, the Temtop M2000 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Temtop M2000 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

6

Temtop M2000 vs GRIMM (PM₁₀; 5-min mean)

7

Temtop M2000 vs FEM GRIMM (PM_{2.5}; 1-hr mean)

- The Temtop M2000 sensors showed strong correlations with the corresponding FEM GRIMM data (R² ~ 0.83)
- Overall, the Temtop M2000 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Temtop M2000 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

Temtop M2000 vs GRIMM (PM₁₀; 1-hr mean)

- The Temtop M2000 sensors showed very weak with the corresponding GRIMM data (R² ~ 0.27)
- Overall, the Temtop M2000 sensors underestimated the PM₁₀ mass concentrations measured by GRIMM
- The Temtop M2000 sensors did not seem to track the PM₁₀ diurnal variations as recorded by GRIMM

Temtop M2000 vs FEM GRIMM (PM_{2.5}; 24-hr mean)

Unit 2

Unit 1

- The Temtop M2000 sensors showed strong correlations with the corresponding FEM GRIMM data ($R^2 \sim 0.88$)
- Overall, the Temtop M2000 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM GRIMM
- The Temtop M2000 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM GRIMM

Temtop M2000 vs GRIMM (PM₁₀; 24-hr mean)

- The Temtop M2000 sensors showed weak correlations with the corresponding GRIMM data (R² ~ 0.46)
- Overall, the Temtop M2000 sensors underestimated the PM₁₀ mass concentrations measured by GRIMM
- The Temtop M2000 sensors did not seem to track the PM₁₀ diurnal variations as recorded by GRIMM

Temtop M2000 vs FEM T640 (PM_{2.5}; 5-min mean)

Temtop M2000 vs T640 (PM₁₀; 5-min mean)

- The Temtop M2000 sensors showed very weak correlations with the corresponding T640 data (R² ~ 0.26)
- Overall, the Temtop M2000 sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Temtop M2000 sensors did not seem to track the PM₁₀ diurnal variations as recorded by T640

Temtop M2000 vs FEM T640 (PM_{2.5}; 1-hr mean)

- The Temtop M2000 sensors showed strong correlations with the corresponding FEM T640 data (R² ~ 0.83)
- Overall, the Temtop M2000 sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Temtop M2000 sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

Temtop M2000 vs T640 (PM₁₀; 1-hr mean)

- The Temtop M2000 sensors showed weak correlations with the corresponding T640 data (R² ~ 0.31)
- Overall, the Temtop M2000 sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Temtop M2000 sensors did not seem to track the PM₁₀ diurnal variations as recorded by T640

Temtop M2000 vs FEM T640 (PM_{2.5}; 24-hr mean)

Temtop M2000 vs T640 (PM₁₀; 24-hr mean)

- The Temtop M2000 sensors showed moderate correlations with the corresponding T640 data (R² ~ 0.50)
- Overall, the Temtop M2000 sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Temtop M2000 sensors did not seem to track the PM₁₀ diurnal variations as recorded by T640

17

Discussion

- The three Temtop M2000 sensors' data recovery from units Unit 1, Unit 2 and Unit 3 ~ 100% for both PM_{2.5} and PM₁₀ measurements
- The absolute intra-model variability was ~ 1.16 and 1.59 μ g/m³ for PM_{2.5} and PM₁₀, respectively
- Strong correlations between FEM GRIMM and FEM T640 for PM_{2.5} (R² ~ 0.89, 1-hr mean) and PM₁₀ (R² ~ 0.89, 1-hr mean) mass concentration measurements
- $PM_{2.5}$ mass concentrations measured by Temtop M2000 sensors showed strong correlations with the corresponding FEM GRIMM and FEM T640 data (R² ~ 0.83 and 0.83, respectively, 1-hr mean). The sensors underestimated $PM_{2.5}$ mass concentrations as measured by FEM GRIMM and FEM T640
- PM₁₀ mass concentrations measured by Temtop M2000 sensors showed very weak to weak correlations with the GRIMM and T640 data (R² ~ 0.27 and 0.31, respectively; 1-hr mean) and underestimated PM₁₀ mass concentrations measured by GRIMM and T640
- No sensor calibration was performed by South Coast AQMD Staff prior to the beginning of this test
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under known aerosol concentrations and controlled temperature and relative humidity conditions
- All results are still preliminary